Visual Minima Timings of Eclipsing Binaries Observed in the Years 1992 - 1996 The paper contains a list of 283 new times of minima and 77 revisedtimes of minima for 63 eclipsing binaries derived by the author fromhis visual observations.
|
Photoelectric Minima of Some Eclipsing Binary Stars We present 119 minima times of 47 eclipsing binaries.
|
The Case for Third Bodies as the Cause of Period Changes in Selected Algol Systems Many eclipsing binary star systems show long-term variations in theirorbital periods, evident in their O-C (observed minus calculated period)diagrams. With data from the Robotic Optical Transient Search Experiment(ROTSE-I) compiled in the SkyDOT database, New Mexico State University 1m data, and recent American Association of Variable Star Observers(AAVSO) data, we revisit Borkovits and Hegedüs's best-casecandidates for third-body effects in eclipsing binaries: AB And, TV Cas,XX Cep, and AK Her. We also examine the possibility of a third bodyorbiting Y Cam. Our new data support their suggestion that a third bodyis present in all systems except AK Her, as is revealed by thesinusoidal variations of the O-C residuals. Our new data suggest that athird body alone cannot explain the variations seen in the O-C residualsof AK Her. We also provide a table of 143 eclipsing binary systems thathave historical AAVSO O-C data with new values computed from the SkyDOTdatabase.
|
Photoelectric Minima of Selected Eclipsing Binaries and Maxima of Pulsating Stars Not Available
|
A catalogue of eclipsing variables A new catalogue of 6330 eclipsing variable stars is presented. Thecatalogue was developed from the General Catalogue of Variable Stars(GCVS) and its textual remarks by including recently publishedinformation about classification of 843 systems and making correspondingcorrections of GCVS data. The catalogue1 represents thelargest list of eclipsing binaries classified from observations.
|
Gravity-darkening exponents in semi-detached binary systems from their photometric observations. II. This second part of our study concerning gravity-darkening presents theresults for 8 semi-detached close binary systems. From the light-curveanalysis of these systems the exponent of the gravity-darkening (GDE)for the Roche lobe filling components has been empirically derived. Themethod used for the light-curve analysis is based on Roche geometry, andenables simultaneous estimation of the systems' parameters and thegravity-darkening exponents. Our analysis is restricted to theblack-body approximation which can influence in some degree theparameter estimation. The results of our analysis are: 1) For four ofthe systems, namely: TX UMa, β Per, AW Cam and TW Cas, there is avery good agreement between empirically estimated and theoreticallypredicted values for purely convective envelopes. 2) For the AI Drasystem, the estimated value of gravity-darkening exponent is greater,and for UX Her, TW And and XZ Pup lesser than corresponding theoreticalpredictions, but for all mentioned systems the obtained values of thegravity-darkening exponent are quite close to the theoretically expectedvalues. 3) Our analysis has proved generally that with the correction ofthe previously estimated mass ratios of the components within some ofthe analysed systems, the theoretical predictions of thegravity-darkening exponents for stars with convective envelopes arehighly reliable. The anomalous values of the GDE found in some earlierstudies of these systems can be considered as the consequence of theinappropriate method used to estimate the GDE. 4) The empiricalestimations of GDE given in Paper I and in the present study indicatethat in the light-curve analysis one can apply the recent theoreticalpredictions of GDE with high confidence for stars with both convectiveand radiative envelopes.
|
Photoelectric Minima of Selected Eclipsing Binaries and Maxima of Pulsating Stars Not Available
|
Photoelectric Minima of Eclipsing Binaries Not Available
|
An Apparent Descriptive Method for Judging the Synchronization of Rotation of Binary Stars The problem of the synchronous rotation of binary stars is judged byusing a synchronous parameter Q introduced in an apparent descriptivemethod. The synchronous parameter Q is defined as the ratio of therotational period to the orbital period. The author suggests severalapparent phenomenal descriptive methods for judging the synchronizationof rotation of binary stars. The first method is applicable when theorbital inclination is well-known. The synchronous parameter is definedby using the orbital inclination i and the observable rotationalvelocity (V1,2 sin i)M. The method is mainly suitable for eclipsingbinary stars. Several others are suggested for the cases when theorbital inclination i is unknown. The synchronous parameters are definedby using a1,2 sin i,m1,2 sin3 i, the mass function f (m) andsemi-amplitudes of the velocity curve, K1,2 given in catalogue ofparameters of spectroscopic binary systems and (V1,2 sin i)M. Thesemethods are suitable for spectroscopic binary stars including those thatshow eclipses and visual binary stars concurrently. The synchronousparameters for fifty-five components in thirty binary systems arecalculated by using several methods. The numerical results are listed inTables 1 and 2. The statistical results are listed in Table 3. Inaddition, several apparent descriptive methods are discussed.
|
The fundamental parameters of the Algol binary AI Draconis revisited We present the results of an analysis of our infrared light curves ofthe Algol-type binary AI Draconis in the J, H and K bands, and ofpublished light curves in the B, V and Strömgren uvby bands,together with spectra obtained by us. The analysis of the light curveswas carried out using a code based on ATLAS model atmospheres and Rochegeometry.The small contribution of the secondary cool component to the totallight of the system in the visible, producing light curves with veryshallow secondary eclipses, makes the stellar and orbital parametersderived from light-curve analysis in the visible spectral rangeuncertain. The larger contribution of the secondary star to the infraredfluxes makes this range particularly well suited to the derivation ofprecise orbital and stellar parameters in binaries of Algol type. Fromthe simultaneous solution of the infrared JHK light curves, we derivethe following absolute orbital and stellar parameters for the twocomponents: = 10160 +/- 160 K,Req,1= 2.12 +/- 0.04 Rsolar,log()1= 4.23; = 5586 +/-110 K, Req,2= 2.36 +/- 0.04 Rsolar,log()2= 3.76; M1= 2.86 +/- 0.09Msolar, q=M2/M1= 0.44 +/- 0.03; a= 7.62+/- 0.09 Rsolar, i= 76.53°+/- 0.3°, e~= 0.0. Here, and log() indicate average surfacevalues, Req is the equivalent radius of the deformed star anda is the orbital size.In our light-curve solutions, the secondary star of AI Dra fills itsRoche lobe (as also indicated by the spectroscopy), thus discountingclaims, based on UBV light curves, that both components of the binaryare located within their Roche lobes. The visible and infraredphotometry show no evidence of any significant infrared excess in thesystem, and the distance of AI Dra is estimated as d= 169 +/- 17 pc.Based on the spectra of AI Dra and template stars in the ranges8210-9060, 6250-7130 and 4040-4920 Å, we classify the stellarcomponents of AI Dra and find that the most probable spectral types areA0V (or perhaps A1V) for the primary and F9.5V for the secondary(although it could reach as far as G4V), respectively. From ourspectroscopic observations, the spectral evolution of AI Dra withorbital phase is also presented. Furthermore, we obtain the projectedrotational velocity of the secondary, whose value turns out to becompatible with the star filling its Roche lobe.
|
Catalogue of Algol type binary stars A catalogue of (411) Algol-type (semi-detached) binary stars ispresented in the form of five separate tables of information. Thecatalogue has developed from an earlier version by including more recentinformation and an improved layout. A sixth table lists (1872) candidateAlgols, about which fewer details are known at present. Some issuesrelating to the classification and interpretation of Algol-like binariesare also discussed.Catalogue is only available in electronic form at the CDS via anonymousftp to cdsarc.u-strasbg.fr (130.79.128.5) or viahttp://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/417/263
|
The third body in the system UX Her The paper presents new photoelectric observations of the eclipsingbinary system UX Her. The data were used to derive 21 times of minima.The shape of the (O-C) curve indicates the presence of the third body inthe system. In the case that the orbital period of the eclipsing pairis constant the following elements were obtained: P3 =69±5 years, e3 = 0.46 and f(m3) = 0.0034Mȯ. The minimum mass of the third body was estimated as0.3 Mȯ.
|
Beobachtungsergebnisse Bundesdeutsche Arbeitsgemeinschaft fur Veranderlichen Serne e.V. Not Available
|
The Origin of Cyclic Period Changes in Close Binaries: The Case of the Algol Binary WW Cygni Year- to decade-long cyclic orbital period changes have been observed inseveral classes of close binary systems, including Algol, W UrsaeMajoris, and RS Canum Venaticorum systems and the cataclysmic variables.The origin of these changes is unknown, but mass loss, apsidal motion,magnetic activity, and the presence of a third body have all beenproposed. In this paper, we use new CCD observations and thecentury-long historical record of the times of primary eclipse for WWCygni to explore the cause of these period changes. WW Cyg is an Algolbinary whose orbital period undergoes a 56 yr cyclic variation with anamplitude of ~0.02 days. We consider and reject the hypotheses of masstransfer, mass loss, apsidal motion, and the gravitational influence ofan unseen companion as the cause for these changes. A model proposed byApplegate, which invokes changes in the gravitational quadrupole momentof the convective and rotating secondary star, is the most likelyexplanation of this star's orbital period changes. This finding is basedon an examination of WW Cyg's residual O-C curve and an analysis of theperiod changes seen in 66 other Algols. Variations in the gravitationalquadrupole moment are also considered to be the most likely explanationfor the cyclic period changes observed in several different types ofbinary systems.
|
149 Bedeckungssterne der BAV-Programme. Eine Analyse der Beobachtungstatigkeit seit den Angangen. Not Available
|
Das Brunner Punktesystem. Not Available
|
Beobachtungsergebnisse Bundesdeutsche Arbeitsgemeinschaft fur Veraenderliche Sterne e.V. Not Available
|
Beobachtungsergebnisse Bundesdeutsche Arbeitsgemeinschaft fur Veraenderliche Sterne e.V. Not Available
|
Stars with the Largest Hipparcos Photometric Amplitudes A list of the 2027 stars that have the largest photometric amplitudes inHipparcos Photometry shows that most variable stars are all Miras. Thepercentage of variable types change as a function of amplitude. Thiscompilation should also be of value to photometrists looking forrelatively unstudied, but large amplitude stars.
|
Photoelectric Minima of Eclipsing Binaries Not Available
|
Do the physical properties of Ap binaries depend on their orbital elements? We reveal sufficient evidence that the physical characteristics of Apstars are related to binarity. The Ap star peculiarity [represented bythe Δ(V1-G) value and magnetic field strength] diminishes witheccentricity, and it may also increase with orbital period(Porb). This pattern, however, does not hold for largeorbital periods. A striking gap that occurs in the orbital perioddistribution of Ap binaries at 160-600d might well mark a discontinuityin the above-mentioned behaviour. There is also an interestingindication that the Ap star eccentricities are relatively lower thanthose of corresponding B9-A2 normal binaries for Porb>10d.All this gives serious support to the pioneering idea of Abt &Snowden concerning a possible interplay between the magnetism of Apstars and their binarity. Nevertheless, we argue instead in favour ofanother mechanism, namely that it is binarity that affects magnetism andnot the opposite, and suggest the presence of a newmagnetohydrodynamical mechanism induced by the stellar companion andstretching to surprisingly large Porb.
|
Photoelectric Minima of Selected Eclipsing Binaries Not Available
|
Near-Infrared Photometric Studies of RZ Cassiopeiae Light curves of the Algol-type binary system, RZ Cassiopeiae, in thenear-IR wavelengths J and K are obtained for the first time. The lightcurves are analyzed using the Wilson-Devinney model. UBV light curves ofRZ Cas obtained by Chambliss are also reanalyzed using the same program.In the J and K bands, the bolometric albedo of the secondary of RZ Casexhibited values above 0.7, whereas the theoretically expected value forsuch a star is 0.5. Also, the values of the secondary temperaturederived from the J and K light curves are found to be less than thatderived from our analysis of the optical light curves as well as fromthe previous studies in the optical photometric bands. We have attemptedto model these effects with a dark spot on the secondary of RZ Cas. TheJ-band light curve gave a better fit with a cool dark spot on thesecondary. Another possible reason for the above mentioned effects is agas stream from the lobe-filling secondary to the primary star. Themagnitudes and colors of the individual components are derived from theobserved light curves and the light contributions from the stars derivedfrom the light curve analysis. The primary is found to be an A3 V staras observed by previous investigators. The secondary is classified asK0-K4 IV from the derived colors. Seven epochs of primary minima and 3epochs of secondary minima are obtained from the observations. Becauseof the increased depths of the secondary eclipse in the infrared bands,the moments of minima are calculated with nearly the same accuracy asthat of the primary minima. All the secondary minima are found to occurat phase 0.5. None of the observed primary minima are flat as found bymany observers before at optical wavelengths. The colors of the systemat the minima obtained by us confirm that the system is partiallyeclipsing.
|
Photoelectric Minima of Eclipsing Binaries Not Available
|
Infrared Light Curves and Spectroscopic Classification of the Algol System UX HER Abstract image available at:http://adsabs.harvard.edu/cgi-bin/nph-bib_query?1997AJ....113.1122L&db_key=AST
|
Interaction of Eclipsing Binaries with their Environment The interaction of eclipsing binary star systems with the mass around(in the form of star, planet, envelope or disk) affects the orbitalperiod of these systems. Thus, the long-term orbital period changes ofeclipsing binaries which can be deduced by using the observed times ofeclipse minima provide a good tool in understanding the interaction ofeclipsing binaries with their environment. In the present contributionmany examples of the orbital period changes of different eclipsingbinaries are presented and interpreted in terms of the interaction withtheir environment.
|
Photoelectric Minima of Selected Eclipsing Binaries Not Available
|
Measurement and study of rotation in close binary stars (III) Statistical analysis of synchronization. Not Available
|
Vitesses radiales. Catalogue WEB: Wilson Evans Batten. Subtittle: Radial velocities: The Wilson-Evans-Batten catalogue. We give a common version of the two catalogues of Mean Radial Velocitiesby Wilson (1963) and Evans (1978) to which we have added the catalogueof spectroscopic binary systems (Batten et al. 1989). For each star,when possible, we give: 1) an acronym to enter SIMBAD (Set ofIdentifications Measurements and Bibliography for Astronomical Data) ofthe CDS (Centre de Donnees Astronomiques de Strasbourg). 2) the numberHIC of the HIPPARCOS catalogue (Turon 1992). 3) the CCDM number(Catalogue des Composantes des etoiles Doubles et Multiples) byDommanget & Nys (1994). For the cluster stars, a precise study hasbeen done, on the identificator numbers. Numerous remarks point out theproblems we have had to deal with.
|
Radio continuum emission from stars: a catalogue update. An updated version of my catalogue of radio stars is presented. Somestatistics and availability are discussed.
|