Оглавление
Изображения
Загрузить ваше изображение
DSS Images Other Images
Публикации по объекту
Condensation temperature trends among stars with planets Results from detailed spectroscopic analyses of stars hosting massiveplanets are employed to search for trends between abundances andcondensation temperatures. The elements C, S, Na, Mg, Al, Ca, Sc, Ti, V,Cr, Mn, Fe, Ni and Zn are included in the analysis of 64 stars withplanets and 33 comparison stars. No significant trends are evident inthe data. This null result suggests that accretion of rocky material onto the photospheres of stars with planets is not the primary explanationfor their high metallicities. However, the differences between the solarphotospheric and meteoritic abundances do display a weak but significanttrend with condensation temperature. This suggests that the metallicityof the Sun's envelope has been enriched relative to its interior byabout 0.07 dex.
| The origin and chemical evolution of carbon in the Galactic thin and thick discs* In order to trace the origin and evolution of carbon in the Galacticdisc, we have determined carbon abundances in 51 nearby F and G dwarfstars. The sample is divided into two kinematically distinct subsampleswith 35 and 16 stars that are representative of the Galactic thin andthick discs, respectively. The analysis is based on spectral synthesisof the forbidden [CI] line at 872.7nm using spectra of very highresolution (R~ 220000) and high signal-to-noise ratio (S/N >~ 300)that were obtained with the Coudé Echelle Spectrograph (CES)spectrograph by the European Southern Observatory (ESO) 3.6-m telescopeat La Silla in Chile. We find that [C/Fe] versus [Fe/H] trends for thethin and thick discs are totally merged and flat for subsolarmetallicities. The thin disc that extends to higher metallicities thanthe thick disc shows a shallow decline in [C/Fe] from [Fe/H]~ 0 and upto [Fe/H]~+0.4. The [C/O] versus [O/H] trends are well separated betweenthe two discs (due to differences in the oxygen abundances) and bear agreat resemblance to the [Fe/O] versus [O/H] trends. Our interpretationof our abundance trends is that the sources that are responsible for thecarbon enrichment in the Galactic thin and thick discs have operated ona time-scale very similar to those that are responsible for the Fe and Yenrichment [i.e. SNIa and asymptotic giant branch (AGB) stars,respectively]. We further note that there exist other observational datain the literature that favour massive stars as the main sources forcarbon. In order to match our carbon trends, we believe that the carbonyields from massive stars then must be very dependent on metallicity forthe C, Fe and Y trends to be so finely tuned in the two discpopulations. Such metallicity-dependent yields are no longer supportedby the new stellar models in the recent literature. For the Galaxy, wehence conclude that the carbon enrichment at metallicities typical ofthe disc is mainly due to low- and intermediate-mass stars, whilemassive stars are still the main carbon contributor at low metallicities(halo and metal-poor thick disc).
| Colour-differential interferometry for the observation of extrasolar planets We present the high angular resolution technique of colour-differentialinterferometry for direct detection of extrasolar giant planets (EGPs).The measurement of differential phase with long-baseline ground-basedinterferometers in the near-infrared could allow the observation ofseveral hot giant extrasolar planets in tight orbit around the nearbystars, and thus yield their low- or mid-resolution spectroscopy,complete orbital data set and mass. Estimates of potentially achievablesignal-to-noise ratios are presented for a number of planets alreadydiscovered by indirect methods. The limits from the instrumental andatmospheric instability are discussed, and a subsequent observationalstrategy is proposed.
| Eccentricity generation in hierarchical triple systems: the planetary regime In previous papers, we developed a technique for estimating the innereccentricity in hierarchical triple systems, with the inner orbit beinginitially circular. We considered systems with well-separated componentsand different initial setups (e.g., coplanar and non-coplanar orbits).However, the systems we examined had comparable masses. In the presentpaper, the validity of some of the formulae derived previously is testedby numerically integrating the full equations of motion for systems withsmaller mass ratios (from 10-3 to 103, i.e.systems with Jupiter-sized bodies). There is also discussion aboutHD217107 and its planetary companions.
| Two Suns in The Sky: Stellar Multiplicity in Exoplanet Systems We present results of a reconnaissance for stellar companions to all 131radial velocity-detected candidate extrasolar planetary systems known asof 2005 July 1. Common proper-motion companions were investigated usingthe multiepoch STScI Digitized Sky Surveys and confirmed by matching thetrigonometric parallax distances of the primaries to companion distancesestimated photometrically. We also attempt to confirm or refutecompanions listed in the Washington Double Star Catalog, in the Catalogsof Nearby Stars Series by Gliese and Jahreiß, in Hipparcosresults, and in Duquennoy & Mayor's radial velocity survey. Ourfindings indicate that a lower limit of 30 (23%) of the 131 exoplanetsystems have stellar companions. We report new stellar companions to HD38529 and HD 188015 and a new candidate companion to HD 169830. Weconfirm many previously reported stellar companions, including six starsin five systems, that are recognized for the first time as companions toexoplanet hosts. We have found evidence that 20 entries in theWashington Double Star Catalog are not gravitationally bound companions.At least three (HD 178911, 16 Cyg B, and HD 219449), and possibly five(including HD 41004 and HD 38529), of the exoplanet systems reside intriple-star systems. Three exoplanet systems (GJ 86, HD 41004, andγ Cep) have potentially close-in stellar companions, with planetsat roughly Mercury-Mars distances from the host star and stellarcompanions at projected separations of ~20 AU, similar to the Sun-Uranusdistance. Finally, two of the exoplanet systems contain white dwarfcompanions. This comprehensive assessment of exoplanet systems indicatesthat solar systems are found in a variety of stellar multiplicityenvironments-singles, binaries, and triples-and that planets survive thepost-main-sequence evolution of companion stars.
| Catalog of Nearby Exoplanets We present a catalog of nearby exoplanets. It contains the 172 knownlow-mass companions with orbits established through radial velocity andtransit measurements around stars within 200 pc. We include fivepreviously unpublished exoplanets orbiting the stars HD 11964, HD 66428,HD 99109, HD 107148, and HD 164922. We update orbits for 83 additionalexoplanets, including many whose orbits have not been revised sincetheir announcement, and include radial velocity time series from theLick, Keck, and Anglo-Australian Observatory planet searches. Both thesenew and previously published velocities are more precise here due toimprovements in our data reduction pipeline, which we applied toarchival spectra. We present a brief summary of the global properties ofthe known exoplanets, including their distributions of orbital semimajoraxis, minimum mass, and orbital eccentricity.Based on observations obtained at the W. M. Keck Observatory, which isoperated jointly by the University of California and the CaliforniaInstitute of Technology. The Keck Observatory was made possible by thegenerous financial support of the W. M. Keck Foundation.
| Dynamical Stability and Habitability of the γ Cephei Binary-Planetary System It has been suggested that the long-lived residual radial velocityvariations observed in the precision radial velocity measurements of theprimary of γ Cephei (HR 8974, HD 222404, HIP 116727) are likelydue to a Jupiter-like planet orbiting this star. In this paper, thedynamics of this planet is studied, and the possibility of the existenceof a terrestrial planet around its central star is discussed.Simulations, which have been carried out for different values of theeccentricity and semimajor axis of the binary, as well as the orbitalinclination of its Jupiter-like planet, expand on previous studies ofthis system and indicate that, for the values of the binary eccentricitysmaller than 0.5, and for all values of the orbital inclination of theJupiter-like planet ranging from 0° to 40°, the orbit of thisplanet is stable. For larger values of the binary eccentricity, thesystem becomes gradually unstable. Integrations also indicate that,within this range of orbital parameters, a terrestrial planet, such asan Earth-like object, can have a long-term stable orbit only atdistances of 0.3-0.8 AU from the primary star. The habitable zone of theprimary, at a range of approximately 3.05-3.7 AU, is, however, unstable.
| No Detectable H+3 Emission from the Atmospheres of Hot Jupiters H+3 emission is the dominant cooling mechanism inJupiter's thermosphere and a useful probe of temperature and iondensities. The H+3 ion is predicted to form in thethermospheres of close-in ``hot Jupiters,'' where its emission would bea significant factor in the thermal energy budget, affecting temperatureand the rate of hydrogen escape from the exosphere. Hot Jupiters arepredicted to have up to 105 times Jupiter'sH+3 emission because they experience extremestellar irradiation and enhanced interactions may occur between theplanetary magnetosphere and the stellar wind. Direct (but unresolved)detection of an extrasolar planet, or the establishment of useful upperlimits, may be possible because a small but significant fraction of thetotal energy received by the planet is reradiated in a few narrow linesof H+3 within which the flux from the star islimited. We present the observing strategy and results of our search foremission from the Q(1,0) transition of H+3 (3.953μm) from extrasolar planets orbiting six late-type dwarfs usingCSHELL, the high-resolution echelle spectrograph on NASA's InfraredTelescope Facility. We exploited the time-dependent Doppler shift of theplanet, which can be as large as 150 km s-1, by differencingspectra between nights, thereby removing the stellar photospheric signaland telluric lines. We set limits on the H+3emission from each of these systems and compare them with models in theliterature. Ideal candidates for future searches are intrinsically faintstars, such as M dwarfs, at very close distances.
| Dwarfs in the Local Region We present lithium, carbon, and oxygen abundance data for a sample ofnearby dwarfs-a total of 216 stars-including samples within 15 pc of theSun, as well as a sample of local close giant planet (CGP) hosts (55stars) and comparison stars. The spectroscopic data for this work have aresolution of R~60,000, a signal-to-noise ratio >150, and spectralcoverage from 475 to 685 nm. We have redetermined parameters and derivedadditional abundances (Z>10) for the CGP host and comparison samples.From our abundances for elements with Z>6 we determine the meanabundance of all elements in the CGP hosts to range from 0.1 to 0.2 dexhigher than nonhosts. However, when relative abundances ([x/Fe]) areconsidered we detect no differences in the samples. We find nodifference in the lithium contents of the hosts versus the nonhosts. Theplanet hosts appear to be the metal-rich extension of local regionabundances, and overall trends in the abundances are dominated byGalactic chemical evolution. A consideration of the kinematics of thesample shows that the planet hosts are spread through velocity space;they are not exclusively stars of the thin disk.
| Simulating observable comets. III. Real stellar perturbers of the Oort cloud and their output Context: .This is the third of a series of papers on simulating themechanisms acting currently on the Oort cloud and producing the observedlong-period comets.Aims.In this paper we investigate the influence ofcurrent stellar perturbers on the Oort cloud of comets under thesimultaneous galactic disk tide. We also analyse the past motion of theobserved long-period comets under the same dynamical model to verify thewidely used definition of dynamically new comets. Methods.The action ofnearby stars and the galactic disk tide on the Oort cloud was simulated.The original orbital elements of all 386 long-period comets of qualityclasses 1 and 2 were calculated, and their motion was followednumerically for one orbital revolution into the past, down to theprevious perihelion. We also simulated the output of the close futurepass of GJ 710 through the Oort cloud. Results.The simulated flux of theobservable comets resulting from the current stellar and galacticperturbations, as well as the distribution of perihelion direction, wasobtained. The same data are presented for the future passage of GJ 710.A detailed description is given of the past evolution of aphelion andperihelion distances of the observed long-period comets. Conclusions. Weobtained no fingerprints of the stellar perturbations in the simulatedflux and its directional structure. The mechanisms producing observablecomets are highly dominated by galactic disk tide because all currentstellar perturbers are too weak. Also the effect of the close passage ofthe star GJ 710 is very difficult to recognise on the background of theGalactic-driven observable comets. For the observed comets we found only45 to be really dynamically "new" according to our definition based onthe previous perihelion distance value.
| Abundance ratios of volatile vs. refractory elements in planet-harbouring stars: hints of pollution? We present the [ X/H] trends as a function of the elemental condensationtemperature TC in 88 planet host stars and in avolume-limited comparison sample of 33 dwarfs without detected planetarycompanions. We gathered homogeneous abundance results for many volatileand refractory elements spanning a wide range of T_C, from a few dozento several hundred kelvin. We investigate possible anomalous trends ofplanet hosts with respect to comparison sample stars to detect evidenceof possible pollution events. No significant differences are found inthe behaviour of stars with and without planets. This is consistent witha "primordial" origin of the metal excess in planet host stars. However,a subgroup of 5 planet host and 1 comparison sample stars stands out ashaving particularly high [ X/H] vs. TC slopes.
| Abundances of refractory elements in the atmospheres of stars with extrasolar planets Aims.This work presents a uniform and homogeneous study of chemicalabundances of refractory elements in 101 stars with and 93 without knownplanetary companions. We carry out an in-depth investigation of theabundances of Si, Ca, Sc, Ti, V, Cr, Mn, Co, Ni, Na, Mg and Al. The newcomparison sample, spanning the metallicity range -0.70< [Fe/H]<0.50, fills the gap that previously existed, mainly at highmetallicities, in the number of stars without known planets.Methods.Weused an enlarged set of data including new observations, especially forthe field "single" comparison stars . The line list previously studiedby other authors was improved: on average we analysed 90 spectral linesin every spectrum and carefully measured more than 16 600 equivalentwidths (EW) to calculate the abundances.Results.We investigate possibledifferences between the chemical abundances of the two groups of stars,both with and without planets. The results are globally comparable tothose obtained by other authors, and in most cases the abundance trendsof planet-host stars are very similar to those of the comparison sample.Conclusions.This work represents a step towards the comprehension ofrecently discovered planetary systems. These results could also beuseful for verifying galactic models at high metallicities andconsequently improve our knowledge of stellar nucleosynthesis andgalactic chemical evolution.
| Ground-based direct detection of close-in extra-solar planets with nulling and high order adaptive optics Ground-based direct detection of extra-solar planets is very challengingdue to high planet to star brightness contrasts. For giant close-inplanets, such as have been discovered by the radial velocity method,closer than 0.1 AU, the reflected light is predicted to be fairly highyielding a contrast ratio ranging from 10-4 to10-5 at near infra-red wavelengths. In this paper, weinvestigate direct detection of reflected light from such planets usingnulling interferometry, and high-order adaptive optics in conjunctionwith large double aperture ground-based telescopes. In thisconfiguration, at least 10-3 suppression of the entirestellar Airy pattern with small loss of planet flux as close as 0.03arcsec is achievable. Distinguishing residual starlight from the planetsignal is achieved by using the center of gravity shift method ormulticolor differential imaging. Using these assumptions, we deriveexposure times from a few minutes to several hours for direct detectionof many of the known extra-solar planets with several short-baselinedouble aperture telescopes such as the Large Binocular Telescope (LBT),the Very Large Telescope (VLT) and the Keck Telescope.
| Oxygen abundances in planet-harbouring stars. Comparison of different abundance indicators We present a detailed and uniform study of oxygen abundances in 155solar type stars, 96 of which are planet hosts and 59 of which form partof a volume-limited comparison sample with no known planets. EWmeasurements were carried out for the [O I] 6300 Å line and the OI triplet, and spectral synthesis was performed for several OH lines.NLTE corrections were calculated and applied to the LTE abundanceresults derived from the O I 7771-5 Å triplet. Abundances from [OI], the O I triplet and near-UV OH were obtained in 103, 87 and 77dwarfs, respectively. We present the first detailed and uniformcomparison of these three oxygen indicators in a large sample ofsolar-type stars. There is good agreement between the [O/H] ratios fromforbidden and OH lines, while the NLTE triplet shows a systematicallylower abundance. We found that discrepancies between OH, [O I] and the OI triplet do not exceed 0.2 dex in most cases. We have studied abundancetrends in planet host and comparison sample stars, and no obviousanomalies related to the presence of planets have been detected. Allthree indicators show that, on average, [O/Fe] decreases with [Fe/H] inthe metallicity range -0.8< [Fe/H] < 0.5. The planet host starspresent an average oxygen overabundance of 0.1-0.2 dex with respect tothe comparison sample.
| Lithium Abundances of F-, G-, and K-Type Stars: Profile-Fitting Analysis of the Li I 6708 Doublet An extensive profile-fitting analysis was performed for the Li(+Fe)6707-6708Å feature of nearby 160 F-K dwarfs/subgiants (including27 planet-host stars) in the Galactic disk ( 7000 K ≳Teff ≳ 5000 K, -1 ≲ [Fe/H] ≲ +0.4), in orderto establish the photospheric lithium abundances of these stars. Thenon-LTE effect (though quantitatively insignificant) was taken intoaccount based on our statistical equilibrium calculations, which werecarried out on an adequate grid of models. Our results confirmed most ofthe interesting observational characteristics revealed by recentlypublished studies, such as the bimodal distribution of the Li abundancesfor stars at Teff ≳ 6000 K, the satisfactory agreementof the upper envelope of the A(Li) vs. [Fe/H] distribution with thetheoretical models, the existence of a positive correlation betweenA(Li) and the stellar mass, and the tendency of lower lithium abundancesof planet-host stars (as compared to stars without planets) at thenarrow ``transition'' region of 5900 K ≳ Teff ≳5800 K. The solar Li abundance derived from this analysis is 0.92 (H =12.00), which is by 0.24dex lower than the widely referenced standardvalue of 1.16.
| Spectroscopic Study on the Atmospheric Parameters of Nearby F--K Dwarfs and Subgiants Based on a collection of high-dispersion spectra obtained at OkayamaAstrophysical Observatory, the atmospheric parameters (Teff,log g, vt, and [Fe/H]) of 160 mid-F through early-K starswere extensively determined by the spectroscopic method using theequivalent widths of Fe I and Fe II lines along with the numericaltechnique of Takeda et al. (2002, PASJ, 54, 451). The results arecomprehensively discussed and compared with the parameter values derivedby different approaches (e.g., photometric colors, theoreticalevolutionary tracks, Hipparcos parallaxes, etc.) as well as with thepublished values found in various literature. It has been confirmed thatour purely spectroscopic approach yields fairly reliable and consistentresults.
| Forty Years of Spectroscopic Stellar Astrophysics in Japan The development of Japanese spectroscopic stellar astrophysics in therecent 40 years is reviewed from an observational point of view. In thisarticle, the research activities are provisionally divided into fourfields: hot stars, hot emission-line (Be) stars, cool stars, and otherstars. Historical developments of the observational facilities atOkayama Astrophysical Observatory (spectrographs and detectors) are alsosummarized in connection with the progress in scientific researchactivities.
| A link between the semimajor axis of extrasolar gas giant planets and stellar metallicity The fact that most extrasolar planets found to date are orbitingmetal-rich stars lends credence to the core accretion mechanism of gasgiant planet formation over its competitor, the disc instabilitymechanism. However, the core accretion mechanism is not refined to thepoint of explaining orbital parameters such as the unexpected semimajoraxes and eccentricities. We propose a model that correlates themetallicity of the host star with the original semimajor axis of itsmost massive planet, prior to migration, assuming that the coreaccretion scenario governs giant gas planet formation. The modelpredicts that the optimum regions for planetary formation shift inwardsas stellar metallicity decreases, providing an explanation for theobserved absence of long-period planets in metal-poor stars. We compareour predictions with the available data on extrasolar planets for starswith masses similar to the mass of the Sun. A fitting procedure producesan estimate of what we define as the zero-age planetary orbit (ZAPO)curve as a function of the metallicity of the star. The model hints thatthe lack of planets circling metal-poor stars may be partly caused by anenhanced destruction probability during the migration process, becausethe planets lie initially closer to their central star.
| Chemical abundances of 22 extrasolar planet host stars* We present observations of 22 extrasolar planet host stars and derivetheir stellar parameters. With the high signal-to-noise ratio spectra,we acquire accurate metallicities and the differential abundances for 15other elements and we discuss the relation between the abundance ratioand the metallicity. These sample stars are metal-rich relative to theSun, covering the range from -0.04 to 0.54 dex with the average [Fe/H]value of 0.15 +/- 0.12 dex, except for HD 37124, which has [Fe/H]=-0.45.The stars with planets show a slight overabundance pattern for [C/Fe]and [Mg/Fe], but [Na/Fe], [Al/Fe], [Si/Fe], [Ti/Fe], [Cr/Fe], [Sc/Fe],[V/Fe], [Ni/Fe] and [Ba/Fe] are approximately solar in the sample stars.These stars also show slight underabundances for [O/Fe], [Ca/Fe] and[Mn/Fe]. The sulphur displays enhanced values, ranging from -0.10 to0.40 through the sample stars. These results are used to investigate theconnection between giant planets and high metallicity and to probe theinfluence of the process on the other elements.
| Magnetospheric radio emission from extrasolar giant planets: the role of the host stars We present a new analysis of the expected magnetospheric radio emissionfrom extrasolar giant planets (EGPs) for a distance limited sample ofthe nearest known extrasolar planets. Using recent results on thecorrelation between stellar X-ray flux and mass-loss rates from nearbystars, we estimate the expected mass-loss rates of the host stars ofextrasolar planets that lie within 20 pc of the Earth. We find that someof the host stars have mass-loss rates that are more than 100 times thatof the Sun and, given the expected dependence of the planetarymagnetospheric radio flux on stellar wind properties, this has a verysubstantial effect. Using these results and extrapolations of the likelymagnetic properties of the extrasolar planets, we infer their likelyradio properties.We compile a list of the most promising radio targets and conclude thatthe planets orbiting Tau Bootes, Gliese 86, Upsilon Andromeda and HD1237(as well as HD179949) are the most promising candidates, with expectedflux levels that should be detectable in the near future with upcomingtelescope arrays. The expected emission peak from these candidate radioemitting planets is typically ~40-50 MHz. We also discuss a range ofobservational considerations for detecting EGPs.
| An Analysis of the Condensation Temperature of Elements of Extrasolar Planetary Systems Using high signal-to-noise ratio spectra of extrasolar planet-hostingstars, we obtained the atmospheric parameters, accurate metallicitiesand the differential abundance for 15 elements (C, O, Na, Mg, Al, Si, S,Ca, Sc, Ti, V, Cr, Mn, Ni and Ba). In a search for possible signaturesof metal-rich material accreting onto the parent stars, we found that ,for a given element, there is no significant trend of increasing [X/H]with increasing condensation temperature Tc. In our sample ofplanet-harboring stars, the volatile and refractory elements behavesimilarly, and we can not confirm if there exists any significantdependence on the condensation temperature Tc.
| Statistical Cataloging of Archival Data for Luminosity Class IV-V Stars. III. The Epoch 2004 [Fe/H] and Temperature Catalogs In this paper, an updated catalog containing averaged values of [Fe/H]is presented for FGK stars on and near the main sequence. The input datafor the catalog are values of [Fe/H] derived from weak and moderatelystrong lines and published before 2005 July 1. Those data are correctedto a uniform temperature scale, and a statistical analysis is thenapplied to a subset of the data that did not contribute to a previousversion of the catalog. In this way, it is found that an accurate zeropoint for the catalog can be established with an rms error of 0.005 dex.After corrections are applied to a number of the newly added data, it isshown that those corrections help to produce satisfactory zero-pointcoherence among the catalog entries. Standard errors that are derivedfor the catalog data are shown to be accurate. It is also shown thatthose standard errors are based on pervasive scatter in the input data,as is expected if those data are affected by genuine random effects.Samples of the metallicity catalog and an accompanying temperaturecatalog are displayed and discussed. To make possible an effectiveextension of the catalog to stars without catalog entries, a databasecontaining photometric metallicities derived by Nordström et al. isconsidered. Standard errors for those metallicities are derived, andzero-point corrections required to put those data on the catalog zeropoint are presented.
| Spectroscopic Properties of Cool Stars (SPOCS). I. 1040 F, G, and K Dwarfs from Keck, Lick, and AAT Planet Search Programs We present a uniform catalog of stellar properties for 1040 nearby F, G,and K stars that have been observed by the Keck, Lick, and AAT planetsearch programs. Fitting observed echelle spectra with synthetic spectrayielded effective temperature, surface gravity, metallicity, projectedrotational velocity, and abundances of the elements Na, Si, Ti, Fe, andNi, for every star in the catalog. Combining V-band photometry andHipparcos parallaxes with a bolometric correction based on thespectroscopic results yielded stellar luminosity, radius, and mass.Interpolating Yonsei-Yale isochrones to the luminosity, effectivetemperature, metallicity, and α-element enhancement of each staryielded a theoretical mass, radius, gravity, and age range for moststars in the catalog. Automated tools provide uniform results and makeanalysis of such a large sample practical. Our analysis method differsfrom traditional abundance analyses in that we fit the observed spectrumdirectly, rather than trying to match equivalent widths, and wedetermine effective temperature and surface gravity from the spectrumitself, rather than adopting values based on measured photometry orparallax. As part of our analysis, we determined a new relationshipbetween macroturbulence and effective temperature on the main sequence.Detailed error analysis revealed small systematic offsets with respectto the Sun and spurious abundance trends as a function of effectivetemperature that would be inobvious in smaller samples. We attempted toremove these errors by applying empirical corrections, achieving aprecision per spectrum of 44 K in effective temperature, 0.03 dex inmetallicity, 0.06 dex in the logarithm of gravity, and 0.5 kms-1 in projected rotational velocity. Comparisons withprevious studies show only small discrepancies. Our spectroscopicallydetermined masses have a median fractional precision of 15%, but theyare systematically 10% higher than masses obtained by interpolatingisochrones. Our spectroscopic radii have a median fractional precisionof 3%. Our ages from isochrones have a precision that variesdramatically with location in the Hertzsprung-Russell diagram. We planto extend the catalog by applying our automated analysis technique toother large stellar samples.
| Five New Multicomponent Planetary Systems We report Doppler measurements for six nearby G- and K-typemain-sequence stars that show multiple low-mass companions, at least oneof which has planetary mass. One system has three planets, the fourthtriple-planet system known around a normal star, and another has anextremely low minimum mass of 18 M⊕. HD 128311 (K0 V)has two planets (one previously known) with minimum masses (Msini) of2.18MJ and 3.21MJ and orbital periods of 1.26 and2.54 yr, suggesting a possible 2:1 resonance. For HD 108874 (G5 V), thevelocities reveal two planets (one previously known) having minimummasses and periods of (Msinib=1.36MJ,Pb=1.08 yr) and (Msinic=1.02MJ,Pc=4.4 yr). HD 50499 (G1 V) has a planet with P=6.8 yr andMsini=1.7MJ, and the velocity residuals exhibit a trend of-4.8 m s-1 yr-1, indicating a more distantcompanion with P>10 yr and minimum mass of 2MJ. HD 37124(G4 IV-V) has three planets, one having Msini=0.61MJ andP=154.5 days, as previously known. We find two plausible triple-planetmodels that fit the data, both having a second planet near P=840 days,with the more likely model having its third planet in a 6 yr orbit andthe other one in a 29 day orbit. For HD 190360, we confirm the planethaving P=7.9 yr and Msini=1.5MJ as found by the Geneva team,but we find a distinctly noncircular orbit with e=0.36+/-0.03, renderingthis not an analog of Jupiter as had been reported. Our velocities alsoreveal a second planet with P=17.1 days and Msini=18.1M⊕. HD 217107 (G8 IV) has a previously known ``hotJupiter'' with Msini=1.4MJ and P=7.13 days, and we confirmits high eccentricity, e=0.13. The velocity residuals reveal an outercompanion in an eccentric orbit, having minimum mass ofMsini>2MJ, eccentricity e~0.5, and a period P>8 yr,implying a semimajor axis a>4 AU and providing an opportunity fordirect detection. We have obtained high-precision photometry of five ofthe six planetary host stars with three of the automated telescopes atFairborn Observatory. We can rule out significant brightness variationsin phase with the radial velocities in most cases, thus supportingplanetary reflex motion as the cause of the velocity variations.Transits are ruled out to very shallow limits for HD 217107 and are alsoshown to be unlikely for the prospective inner planets of the HD 37124and HD 108874 systems. HD 128311 is photometrically variable with anamplitude of 0.03 mag and a period of 11.53 days, which is much shorterthan the orbital periods of its two planetary companions. This rotationperiod explains the origin of periodic velocity residuals to thetwo-planet model of this star. All of the planetary systems here wouldbe further constrained with astrometry by the Space InterferometryMission.Based on observations obtained at the W. M. Keck Observatory, which isoperated jointly by the University of California and the CaliforniaInstitute of Technology. Keck time has been granted by both NASA and theUniversity of California.
| Can Life Develop in the Expanded Habitable Zones around Red Giant Stars? We present some new ideas about the possibility of life developingaround subgiant and red giant stars. Our study concerns the temporalevolution of the habitable zone. The distance between the star and thehabitable zone, as well as its width, increases with time as aconsequence of stellar evolution. The habitable zone moves outward afterthe star leaves the main sequence, sweeping a wider range of distancesfrom the star until the star reaches the tip of the asymptotic giantbranch. Currently there is no clear evidence as to when life actuallyformed on the Earth, but recent isotopic data suggest life existed atleast as early as 7×108 yr after the Earth was formed.Thus, if life could form and evolve over time intervals from5×108 to 109 yr, then there could behabitable planets with life around red giant stars. For a 1Msolar star at the first stages of its post-main-sequenceevolution, the temporal transit of the habitable zone is estimated to beseveral times 109 yr at 2 AU and around 108 yr at9 AU. Under these circumstances life could develop at distances in therange 2-9 AU in the environment of subgiant or giant stars, and in thefar distant future in the environment of our own solar system. After astar completes its first ascent along the red giant branch and the Heflash takes place, there is an additional stable period of quiescent Hecore burning during which there is another opportunity for life todevelop. For a 1 Msolar star there is an additional109 yr with a stable habitable zone in the region from 7 to22 AU. Space astronomy missions, such as proposed for the TerrestrialPlanet Finder (TPF) and Darwin, that focus on searches for signatures oflife on extrasolar planets, should also consider the environments ofsubgiants and red giant stars as potentially interesting sites forunderstanding the development of life. We performed a preliminaryevaluation of the difficulty of interferometric observations of planetsaround red giant stars compared to a main-sequence star environment. Weshow that pathfinder missions for TPF and Darwin, such as Eclipse andFKSI, have sufficient angular resolution and sensitivity to search forhabitable planets around some of the closest evolved stars of thesubgiant and red giant class.
| The Planet-Metallicity Correlation We have recently carried out spectral synthesis modeling to determineTeff, logg, vsini, and [Fe/H] for 1040 FGK-type stars on theKeck, Lick, and Anglo-Australian Telescope planet search programs. Thisis the first time that a single, uniform spectroscopic analysis has beenmade for every star on a large Doppler planet search survey. We identifya subset of 850 stars that have Doppler observations sufficient todetect uniformly all planets with radial velocity semiamplitudes K>30m s-1 and orbital periods shorter than 4 yr. From this subsetof stars, we determine that fewer than 3% of stars with-0.5<[Fe/H]<0.0 have Doppler-detected planets. Above solarmetallicity, there is a smooth and rapid rise in the fraction of starswith planets. At [Fe/H]>+0.3 dex, 25% of observed stars have detectedgas giant planets. A power-law fit to these data relates the formationprobability for gas giant planets to the square of the number of metalatoms. High stellar metallicity also appears to be correlated with thepresence of multiple-planet systems and with the total detected planetmass. This data set was examined to better understand the origin of highmetallicity in stars with planets. None of the expected fossilsignatures of accretion are observed in stars with planets relative tothe general sample: (1) metallicity does not appear to increase as themass of the convective envelopes decreases, (2) subgiants with planetsdo not show dilution of metallicity, (3) no abundance variations for Na,Si, Ti, or Ni are found as a function of condensation temperature, and(4) no correlations between metallicity and orbital period oreccentricity could be identified. We conclude that stars with extrasolarplanets do not have an accretion signature that distinguishes them fromother stars; more likely, they are simply born in higher metallicitymolecular clouds.Based on observations obtained at Lick and Keck Observatories, operatedby the University of California, and the Anglo-Australian Observatories.
| Prospects for Habitable ``Earths'' in Known Exoplanetary Systems We have examined whether putative Earth-mass planets could remainconfined to the habitable zones (HZs) of the 111 exoplanetary systemsconfirmed by 2004 August. We find that in about half of these systemsthere could be confinement for at least the past 1000 Myr, though insome cases only in variously restricted regions of the HZ. The HZmigrates outward during the main-sequence lifetime, and we find that inabout two-thirds of the systems an Earth-mass planet could be confinedto the HZ for at least 1000 Myr sometime during the main-sequencelifetime. Clearly, these systems should be high on the target list forexploration for terrestrial planets. We have reached our conclusions bydetailed investigations of seven systems, which has resulted in anestimate of the distance from the giant planet within which orbitalstability is unlikely for an Earth-mass planet. This distance is givenby nRH, where RH is the Hill radius of the giantplanet and n is a multiplier that depends on the giant's orbitaleccentricity and on whether the Earth-mass planet is interior orexterior to the giant planet. We have estimated n for each of the sevensystems by launching Earth-mass planets in various orbits and followingtheir fate with a hybrid orbital integrator. We have then evaluated thehabitability of the other exoplanetary systems using nRHderived from the giant's orbital eccentricity without carrying outtime-consuming orbital integrations. A stellar evolution model has beenused to obtain the HZs throughout the main-sequence lifetime.
| The Cornell High-Order Adaptive Optics Survey for Brown Dwarfs in Stellar Systems. I. Observations, Data Reduction, and Detection Analyses In this first of a two-paper sequence, we report techniques and resultsof the Cornell High-Order Adaptive Optics Survey (CHAOS) for brown dwarfcompanions. At the time of this writing, this study represents the mostsensitive published population survey of brown dwarf companions tomain-sequence stars for separations akin to our own outer solar system.The survey, conducted using the Palomar 200 inch (5 m) Hale Telescope,consists of Ks coronagraphic observations of 80 main-sequencestars out to 22 pc. At 1" separation from a typical target system, thesurvey achieves median sensitivities 10 mag fainter than the parentstar. In terms of companion mass, the survey achieves typicalsensitivities of 25MJ (1 Gyr), 50MJ (solar age),and 60MJ (10 Gyr), using the evolutionary models of Baraffeand coworkers. Using common proper motion to distinguish companions fromfield stars, we find that no systems show positive evidence of asubstellar companion (searchable separation ~1"-15" projected separation~10-155 AU at the median target distance). In the second paper of theseries we will present our Monte Carlo population simulations.
| On the ages of exoplanet host stars We obtained spectra, covering the CaII H and K region, for 49 exoplanethost (EH) stars, observable from the southern hemisphere. We measuredthe chromospheric activity index, R'{_HK}. We compiled previouslypublished values of this index for the observed objects as well as theremaining EH stars in an effort to better smooth temporal variations andderive a more representative value of the average chromospheric activityfor each object. We used the average index to obtain ages for the groupof EH stars. In addition we applied other methods, such as: Isochrone,lithium abundance, metallicity and transverse velocity dispersions, tocompare with the chromospheric results. The kinematic method is a lessreliable age estimator because EH stars lie red-ward of Parenago'sdiscontinuity in the transverse velocity dispersion vs dereddened B-Vdiagram. The chromospheric and isochrone techniques give median ages of5.2 and 7.4 Gyr, respectively, with a dispersion of 4 Gyr. The medianage of F and G EH stars derived by the isochrone technique is 1-2 Gyrolder than that of identical spectral type nearby stars not known to beassociated with planets. However, the dispersion in both cases is large,about 2-4 Gyr. We searched for correlations between the chromosphericand isochrone ages and L_IR/L* (the excess over the stellarluminosity) and the metallicity of the EH stars. No clear tendency isfound in the first case, whereas the metallicy dispersion seems toslightly increase with age.
| Sulphur abundance in Galactic stars We investigate sulphur abundance in 74 Galactic stars by using highresolution spectra obtained at ESO VLT and NTT telescopes. For the firsttime the abundances are derived, where possible, from three opticalmultiplets: Mult. 1, 6, and 8. By combining our own measurements withdata in the literature we assemble a sample of 253 stars in themetallicity range -3.2 [Fe/H] +0.5. Two important features,which could hardly be detected in smaller samples, are obvious from thislarge sample: 1) a sizeable scatter in [S/Fe] ratios around [Fe/H]-1; 2) at low metallicities we observe stars with [S/Fe] 0.4, aswell as stars with higher [S/Fe] ratios. The latter do not seem to bekinematically different from the former ones. Whether the latter findingstems from a distinct population of metal-poor stars or simply from anincreased scatter in sulphur abundances remains an open question.
|
Добавить новую статью
Внешние ссылки
- - Внешних ссылок не найдено -
Добавить внешнюю ссылку
Группы:
|
Наблюдательные данные и астрометрия
Созвездие: | Рыбы |
Прямое восхождение: | 22h58m15.50s |
Склонение: | -02°23'43.0" |
Видимая звёздная величина: | 6.16 |
Расстояние: | 19.72 парсек |
Собственное движение RA: | -5.8 |
Собственное движение Dec: | -15.1 |
B-T magnitude: | 7.098 |
V-T magnitude: | 6.248 |
Каталоги и обозначения:
|