Poчetna     Да почнемо     To Survive in the Universe    
Inhabited Sky
    News@Sky     Астро Фотографије     Колекција     Форум     Blog New!     FAQ(Често постављана питања     Штампа     Улогуј се  

TYC 820-724-1


Садржај

Слике

Уплоадјуј своје слике

DSS Images   Other Images


Везани чланци

Chemical Compositions of Kinematically Selected Outer Halo Stars
Chemical abundances of 26 metal-poor dwarfs and giants are determinedfrom high-resolution and high signal-to-noise ratio spectra obtainedwith the Subaru/High Dispersion Spectrograph. The sample is selected sothat most of the objects have outer-halo kinematics. Self-consistentatmospheric parameters were determined by an iterative procedure basedon spectroscopic analysis. Abundances of 13 elements, includingα-elements (Mg, Si, Ca, Ti), odd-Z light elements (Na, Sc),iron-peak elements (Cr, Mn, Fe, Ni, Zn), and neutron-capture elements(Y, Ba), are determined by two independent data reduction and localthermodynamic equillibrium analysis procedures, confirming theconsistency of the stellar parameters and abundances results. We find adecreasing trend of [α/Fe] with increasing [Fe/H] for the range of–3.5< [Fe/H] <–1, as found by Stephens &Boesgaard. [Zn/Fe] values of most objects in our sample are slightlylower than the bulk of halo stars previously studied. These results arediscussed as possible chemical properties of the outer halo in theGalaxy.Based on data collected at the Subaru Telescope, which is operated bythe National Astronomical Observatory of Japan.

Beryllium, Oxygen, and Iron Abundances in Extremely Metal-Deficient Stars
The abundance of beryllium in the oldest, most metal-poor stars acts asa probe of early star formation and Galactic chemical evolution. We haveanalyzed high-resolution, high signal-to-noise ratio Keck/HIRES spectraof 24 stars with [Fe/H] from -2.3 to -3.5 in order todetermine the history of Be abundance and explore the possibility of aBe plateau. We have determined stellar parameters of our samplespectroscopically, using equivalent widths of Fe I, Ti I, and Ti IIlines. We have determined O abundances from three OH features whichoccur in the same spectral region; this region is relatively uncrowdedand has a well determined continuum in these very/extremely metal-poorstars. We have supplemented this sample with reanalyzed spectra of 25stars from previous observations so that our total sample ranges in[Fe/H] from -0.5 to -3.5. Our results indicate that therelationship between Be and [Fe/H] continues to lower metallicities witha slope of 0.92 ± 0.04. Although there is no indication of aplateau with constant Be abundance, the four lowest metallicity stars(below [Fe/H] of -3.0) do show a Be enhancement relative to Fe atthe 1σ level. A single relationship between Be and [O/H] has aslope of 1.21 ± 0.08, but there is also a good fit with twoslopes: 1.59 above [O/H] = -1.6 and 0.74 for stars with [O/H]below -1.6. This change in slope could result from a change in thedominant production mechanism for Be. In the era of the formation of themore metal-poor stars, Be would be formed by acceleration of CNO atomsin the vicinity of SN II and in later times by high-energy cosmic-raysbombarding CNO in the ambient interstellar gas. We find an excellentcorrelation between [Fe/H] and [O/H] and show that [O/Fe] is near +1.0at [Fe/H] = -3.5 declining to 0 at [Fe/H] = 0.

The C/O ratio at low metallicity: constraints on early chemical evolution from observations of Galactic halo stars
Aims: We present new measurements of the abundances of carbon and oxygenderived from high-excitation C i and O i absorption lines in metal-poorhalo stars, with the aim of clarifying the main sources of these twoelements in the early stages of the chemical enrichment of the Galaxy.Methods: We target 15 new stars compared to our previous study,with an emphasis on additional C/O determinations in the crucialmetallicity range -3 ⪉ [Fe/H]⪉ -2. The stellar effectivetemperatures were estimated from the profile of the Hβ line.Departures from local thermodynamic equilibrium were accounted for inthe line formation for both carbon and oxygen. The non-LTE effects arevery strong at the lowest metallicities but, contrary to what hassometimes been assumed in the past due to a simplified assessment, ofdifferent degrees for the two elements. In addition, for the 28 starswith [Fe/H] < -1 previously analysed, stellar parameters werere-derived and non-LTE corrections applied in the same fashion as forthe rest of our sample, giving consistent abundances for 43 halo starsin total. Results: The new observations and non-LTE calculationsstrengthen previous suggestions of an upturn in C/O towards lowermetallicity (particularly for [O/H] ⪉ -2). The C/O values derivedfor these very metal-poor stars are, however, sensitive to excitationvia the still poorly quantified inelastic H collisions. While these donot significantly affect the non-LTE results for C i, they greatlymodify the O i outcome. Adopting the H collisional cross-sectionsestimated from the classical Drawin formula leads to [C/O] ≈ 0 at[O/H] ≈ -3. To remove the upturn in C/O, near-LTE formation for O ilines would be required, which could only happen if the H collisionalefficiency with the Drawin recipe is underestimated by factors of up toseveral tens of times, a possibility which we consider unlikely. Conclusions: The high C/O values derived at the lowest metallicitiesmay be revealing the fingerprints of Population III stars or may signalrotationally-aided nucleosynthesis in more normal Population II stars.Based on data collected with the European Southern Observatory's VeryLarge Telescope (VLT) at the Paranal, Chile (programmes No. 67.D-0106and 73.D-0024) and with the Magellan Telescope at Las CampanasObservatory, Chile.

Lithium abundances of halo dwarfs based on excitation temperature. I. Local thermodynamic equilibrium
Context: The discovery of the Spite plateau in the abundances of7Li for metal-poor stars led to the determination of anobservationally deduced primordial lithium abundance. However, after thesuccess of the Wilkinson Microwave Anisotropy Probe (WMAP) indetermining the baryon density, Ω_Bh2, there was adiscrepancy between observationally determined and theoreticallydetermined abundances in the case of 7Li. One of the mostimportant uncertain factors in the calculation of the stellar7Li abundance is the effective temperature, T_eff. Aims: We use sixteen metal-poor halo dwarfs to calculate new T_effvalues using the excitation energy method. With this temperature scalewe then calculate new Li abundances for this group of stars in anattempt to resolve the 7Li discrepancy. Methods: Usinghigh signal-to-noise (S/N ≈ 100) spectra of 16 metal-poor halodwarfs, obtained with the UCLES spectrograph on the AAT, measurements ofequivalent widths from a set of unblended Fe I lines are made. Theseequivalent widths are then used to calculate new T_eff values with theuse of the single line radiative transfer program WIDTH6, where we haveconstrained the gravity using either theoretical isochrones or theHipparcos parallax, rather than the ionization balance. The lithiumabundances of the stars are calculated with these temperatures. Results: The physical parameters are derived for the 16 programmestars, and two standards. These include T_eff, log g, [Fe/H],microturbulence and 7Li abundances. A comparison between thetemperature scale of this work and those adopted by others has beenundertaken. We find good consistency with the temperatures derived fromthe Hα line by Asplund et al. (2006, ApJ, 644, 229), but not withthe hotter scale of Meléndez & Ramírez (2004, ApJ,615, L33). We also present results of the investigation into whether anytrends between 7Li and metallicity or temperature are presentin these metal-poor stars.Appendix A is only available in electronic form at the CDS via anonymousftp to cdsarc.u-strasbg.fr (130.79.128.5) or viahttp://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/493/601

Speckle interferometry of metal-poor stars in the solar neighborhood. I
We report the results of speckle-interferometric observations of 109high proper-motion metalpoor stars made with the 6-m telescope of theSpecial Astrophysical Observatory of the Russian Academy of Sciences. Weresolve eight objects—G102-20, G191-55, BD+19° 1185A, G89-14,G87-45, G87-47, G111-38, and G114-25—into individual componentsand we are the first to astrometrically resolve seven of these stars.New resolved systems included two triple (G111-38, G87-47) and onequadruple (G89-14) star. The ratio ofsingle-to-binary-to-triple-to-quadruple systems among the stars of oursample is equal to 71:28:6:1.

Is ^6Li in metal-poor halo stars produced in situ by solar-like flares?
The high ^6Li abundances recently measured in metal-poor halo stars arefar above the value predicted by Big Bang nucleosynthesis. They cannotbe explained by galactic cosmic-ray interactions in the interstellarmedium either. Various pre-galactic sources of ^6Li have been proposedin the literature. We study the possibility that the observed ^6Li wasproduced by repeated solar-like flares on the main sequence of theselow-metallicity stars. The time-dependent flaring activity of theseobjects is estimated from the observed evolution of rotation-inducedactivity in Pop I dwarf stars. As in solar flares, ^6Li could be mainlycreated in interactions of flare-accelerated ^3He with stellaratmospheric ^4He, via the reaction ^4He(^3He, p)^6Li. Stellar dilutionand destruction of flare-produced ^6Li are evaluated from theevolutionary models of metal-poor stars developed by Richard andco-workers. Stellar depletion should be less important for ^6Li atomssynthesized in flares than for those of protostellar origin. Theoreticalfrequency distributions of ^6Li/^7Li ratios are calculated using aMonte-Carlo method and compared with the observations. Excellentagreement is found with the measured ^6Li/^7Li distribution, when takinginto account the contribution of protostellar ^6Li originating fromgalactic cosmic-ray nucleosynthesis. We propose as an observational testof the model to seek for a positive correlation between ^6Li/^7Li andstellar rotation velocity. We also show that the amounts of ^7Li, Be andB produced in flares of metal-poor halo stars are negligible as comparedwith the measured abundances of these species. ^6Li in low-metallicitystars may be a unique evidence of the nuclear processes occuring instellar flares.

Medium-resolution Isaac Newton Telescope library of empirical spectra - II. The stellar atmospheric parameters
We present a homogeneous set of stellar atmospheric parameters(Teff, logg, [Fe/H]) for MILES, a new spectral stellarlibrary covering the range λλ 3525-7500Å at2.3Å (FWHM) spectral resolution. The library consists of 985 starsspanning a large range in atmospheric parameters, from super-metal-rich,cool stars to hot, metal-poor stars. The spectral resolution, spectraltype coverage and number of stars represent a substantial improvementover previous libraries used in population synthesis models. Theatmospheric parameters that we present here are the result of aprevious, extensive compilation from the literature. In order toconstruct a homogeneous data set of atmospheric parameters we have takenthe sample of stars of Soubiran, Katz & Cayrel, which has very welldetermined fundamental parameters, as the standard reference system forour field stars, and have calibrated and bootstrapped the data fromother papers against it. The atmospheric parameters for our clusterstars have also been revised and updated according to recent metallicityscales, colour-temperature relations and improved set of isochrones.

Pulkovo compilation of radial velocities for 35495 stars in a common system.
Not Available

Medium-resolution Isaac Newton Telescope library of empirical spectra
A new stellar library developed for stellar population synthesismodelling is presented. The library consists of 985 stars spanning alarge range in atmospheric parameters. The spectra were obtained at the2.5-m Isaac Newton Telescope and cover the range λλ3525-7500 Å at 2.3 Å (full width at half-maximum) spectralresolution. The spectral resolution, spectral-type coverage,flux-calibration accuracy and number of stars represent a substantialimprovement over previous libraries used in population-synthesis models.

Lithium Isotopic Abundances in Metal-poor Halo Stars
Very high quality spectra of 24 metal-poor halo dwarfs and subgiantshave been acquired with ESO's VLT/UVES for the purpose of determining Liisotopic abundances. The derived one-dimensional, non-LTE 7Li abundances from the Li I 670.8 nm line reveal a pronounceddependence on metallicity but with negligible scatter around this trend.Very good agreement is found between the abundances from the Li I 670.8nm line and the Li I 610.4 nm line. The estimated primordial 7Li abundance is7Li/H=(1.1-1.5)×10-10, which is a factor of3-4 lower than predicted from standard big bang nucleosynthesis with thebaryon density inferred from the cosmic microwave background.Interestingly, 6Li is detected in 9 of our 24 stars at the>=2 σ significance level. Our observations suggest theexistence of a 6Li plateau at the level oflogε6Li~0.8 however, taking into accountpredictions for 6Li destruction during the pre-main-sequenceevolution tilts the plateau such that the 6Li abundancesapparently increase with metallicity. Our most noteworthy result is thedetection of 6Li in the very metal-poor star LP 815-43. Sucha high 6Li abundance during these early Galactic epochs isvery difficult to achieve by Galactic cosmic-ray spallation andα-fusion reactions. It is concluded that both Li isotopes have apre-Galactic origin. Possible 6Li production channels includeprotogalactic shocks and late-decaying or annihilating supersymmetricparticles during the era of big bang nucleosynthesis. The presence of6Li limits the possible degree of stellar 7Lidepletion and thus sharpens the discrepancy with standard big bangnucleosynthesis.Based on observations collected at the European Southern Observatory,Paranal, Chile (observing programs 65.L-0131, 68.D-0091, and273.D-5043).

Na, Mg and Al abundances as a population discriminant for nearby metal-poor stars
Aims.Parameters for 55 nearby metal-poor stars are determined usinghigh-resolution spectroscopy. Together with similar data taken from arecent analysis, they are used to show trends of their Galacticevolution with stellar [Fe/H] or [Mg/H] abundances. The separation ofabundance ratios between disk and halo stars is used as a basiccriterion for population membership. Methods.After carefulselection of a clean subsample free of suspected or known binaries andpeculiar stars, abundances of Mg, Na and Al are based on NLTE kineticequilibrium calculations applied to spectrum synthesis methods. Results.The relation between [Na/Mg] and [Fe/H] is a continuousenrichment through all three Galactic populations spanning a range ofvalues between a metal-poor plateau at [ Na/Mg] = -0.7 and solar values.[Al/Mg] displays a step-like difference between stars of the Galactichalo with overline[Al/Mg] ˜ -0.45 and the two disk populations withoverline[Al/Mg] ˜ +0.10. [Al/Mg] ratios, together with the [Mg/Fe]ratios, asymmetric drift velocities V, and stellar evolutionary ages,make possible the individual discrimination between stars of the thickdisk and the halo. At present, this evidence is limited by the smallnumber of stars, and by the theoretical and empirical uncertainties ofstellar age determinations, but it achieves a high significance. Conclusions.While the stellar sample is not complete with respect tospace volume, the resulting abundances indicate the necessity to revisecurrent models of chemical evolution to allow for an adequate productionof Al in early stellar generations.

Galactic model parameters for field giants separated from field dwarfs by their 2MASS and V apparent magnitudes
We present a method which separates field dwarfs and field giants bytheir 2MASS and V apparent magnitudes. This method is based onspectroscopically selected standards and is hence reliable. We appliedit to stars in two fields, SA 54 and SA 82, and we estimated a full setof Galactic model parameters for giants including their total localspace density. Our results are in agreement with the ones given in therecent literature.

uvby-β photometry of high-velocity and metal-poor stars. XI. Ages of halo and old disk stars
New uvby-β data are provided for 442 high-velocity and metal-poorstars; 90 of these stars have been observed previously by us, and 352are new. When combined with our previous two photometric catalogues, thedata base is now made up of 1533 high-velocity and metal-poor stars, allwith uvby-β photometry and complete kinematic data, such as propermotions and radial velocities taken from the literature. Hipparcos, plusa new photometric calibration for Mv also based on theHipparcos parallaxes, provide distances for nearly all of these stars;our previous photometric calibrations give values for E(b-y) and [Fe/H].The [Fe/H], V(rot) diagram allows us to separate these stars intodifferent Galactic stellar population groups, such as old-thin-disk,thick-disk, and halo. The X histogram, where X is our stellar-populationdiscriminator combining V(rot) and [Fe/H], and contour plots for the[Fe/H], V(rot) diagram both indicate two probable components to thethick disk. These population groups and Galactic components are studiedin the (b-y)0, Mv diagram, compared to theisochrones of Bergbusch & VandenBerg (2001, ApJ, 556, 322), toderive stellar ages. The two thick-disk groups have the meancharacteristics: ([Fe/H], V(rot), Age, σW') ≈ (-0.7dex, 120 km s-1, 12.5 Gyr, 62.0 km s-1), and≈(-0.4, 160, 10.0, 45.8). The seven most metal-poor halo groups,-2.31 ≤ [Fe/H] ≤ -1.31, show a mean age of 13.0 ± 0.2(mean error) Gyr, giving a mean difference from the WMAP results for theage of the Universe of 0.7 ± 0.3 Gyr. These results for the agesand components of the thick disk and for the age of the Galactic halofield stars are discussed in terms of various models and ideas for theformation of galaxies and their stellar populations.

The lithium content of the Galactic Halo stars
Thanks to the accurate determination of the baryon density of theuniverse by the recent cosmic microwave background experiments, updatedpredictions of the standard model of Big Bang nucleosynthesis now yieldthe initial abundance of the primordial light elements withunprecedented precision. In the case of ^7Li, the CMB+SBBN value issignificantly higher than the generally reported abundances for Pop IIstars along the so-called Spite plateau. In view of the crucialimportance of this disagreement, which has cosmological, galactic andstellar implications, we decided to tackle the most critical issues ofthe problem by revisiting a large sample of literature Li data in halostars that we assembled following some strict selection criteria on thequality of the original analyses. In the first part of the paper wefocus on the systematic uncertainties affecting the determination of theLi abundances, one of our main goal being to look for the "highestobservational accuracy achievable" for one of the largest sets of Liabundances ever assembled. We explore in great detail the temperaturescale issue with a special emphasis on reddening. We derive four sets ofeffective temperatures by applying the same colour {T}_eff calibrationbut making four different assumptions about reddening and determine theLTE lithium values for each of them. We compute the NLTE corrections andapply them to the LTE lithium abundances. We then focus on our "best"(i.e. most consistent) set of temperatures in order to discuss theinferred mean Li value and dispersion in several {T}_eff and metallicityintervals. The resulting mean Li values along the plateau for [Fe/H]≤ 1.5 are A(Li)_NLTE = 2.214±0.093 and 2.224±0.075when the lowest effective temperature considered is taken equal to 5700K and 6000 K respectively. This is a factor of 2.48 to 2.81 (dependingon the adopted SBBN model and on the effective temperature range chosento delimit the plateau) lower than the CMB+SBBN determination. We findno evidence of intrinsic dispersion. Assuming the correctness of theCMB+SBBN prediction, we are then left with the conclusion that the Liabundance along the plateau is not the pristine one, but that halo starshave undergone surface depletion during their evolution. In the secondpart of the paper we further dissect our sample in search of newconstraints on Li depletion in halo stars. By means of the Hipparcosparallaxes, we derive the evolutionary status of each of our samplestars, and re-discuss our derived Li abundances. A very surprisingresult emerges for the first time from this examination. Namely, themean Li value as well as the dispersion appear to be lower (althoughfully compatible within the errors) for the dwarfs than for the turnoffand subgiant stars. For our most homogeneous dwarfs-only sample with[Fe/H] ≤ 1.5, the mean Li abundances are A(L)_NLTE = 2.177±0.071 and 2.215±0.074 when the lowest effective temperatureconsidered is taken equal to 5700 K and 6000 K respectively. This is afactor of 2.52 to 3.06 (depending on the selected range in {T}_eff forthe plateau and on the SBBN predictions we compare to) lower than theCMB+SBBN primordial value. Instead, for the post-main sequence stars thecorresponding values are 2.260±0.1 and 2.235±0.077, whichcorrespond to a depletion factor of 2.28 to 2.52. These results,together with the finding that all the stars with Li abnormalities(strong deficiency or high content) lie on or originate from the hotside of the plateau, lead us to suggest that the most massive of thehalo stars have had a slightly different Li history than their lessmassive contemporaries. In turn, this puts strong new constraints on thepossible depletion mechanisms and reinforces Li as a stellartomographer.

A Catalog of Northern Stars with Annual Proper Motions Larger than 0.15" (LSPM-NORTH Catalog)
The LSPM catalog is a comprehensive list of 61,977 stars north of theJ2000 celestial equator that have proper motions larger than 0.15"yr-1 (local-background-stars frame). The catalog has beengenerated primarily as a result of our systematic search for high propermotion stars in the Digitized Sky Surveys using our SUPERBLINK software.At brighter magnitudes, the catalog incorporates stars and data from theTycho-2 Catalogue and also, to a lesser extent, from the All-SkyCompiled Catalogue of 2.5 million stars. The LSPM catalog considerablyexpands over the old Luyten (Luyten Half-Second [LHS] and New LuytenTwo-Tenths [NLTT]) catalogs, superseding them for northern declinations.Positions are given with an accuracy of <~100 mas at the 2000.0epoch, and absolute proper motions are given with an accuracy of ~8 masyr-1. Corrections to the local-background-stars propermotions have been calculated, and absolute proper motions in theextragalactic frame are given. Whenever available, we also give opticalBT and VT magnitudes (from Tycho-2, ASCC-2.5),photographic BJ, RF, and IN magnitudes(from USNO-B1 catalog), and infrared J, H, and Ks magnitudes(from 2MASS). We also provide an estimated V magnitude and V-J color fornearly all catalog entries, useful for initial classification of thestars. The catalog is estimated to be over 99% complete at high Galacticlatitudes (|b|>15deg) and over 90% complete at lowGalactic latitudes (|b|>15deg), down to a magnitudeV=19.0, and has a limiting magnitude V=21.0. All the northern starslisted in the LHS and NLTT catalogs have been reidentified, and theirpositions, proper motions, and magnitudes reevaluated. The catalog alsolists a large number of completely new objects, which promise to expandvery significantly the census of red dwarfs, subdwarfs, and white dwarfsin the vicinity of the Sun.Based on data mining of the Digitized Sky Surveys (DSSs), developed andoperated by the Catalogs and Surveys Branch of the Space TelescopeScience Institute (STScI), Baltimore.Developed with support from the National Science Foundation (NSF), aspart of the NASA/NSF NStars program.

Mg abundances in metal-poor halo stars as a tracer of early Galactic mixing
We present results of a detailed chemical analysis performed on 23main-sequence turnoff stars having -3.4 ≤ [Fe/H] ≤ -2.2, asample selected to be highly homogeneous in Teff and log(g).We investigate the efficiency of mixing in the early Galaxy by means ofthe [Mg/Fe] ratio, and find that all values lie within a total range of0.2 dex, with a standard deviation about the mean of 0.06 dex,consistent with measurement errors. This implies there is little or nointrinsic scatter in the early ISM, as suggested also by the most recentresults from high-quality VLT observations. These results are incontrast with inhomogeneous Galactic chemical evolution (iGCE) modelsadopting present supernova (SN) II yields, which predict a peak-to-peakscatter in [Mg/Fe] as high as 1 dex at very low metallicity, with acorresponding standard deviation of about 0.4 dex. We propose thatcooling and mixing timescales should be investigated in iGCE models toaccount for the apparent disagreement with present observations. Thecontrast between the constancy and small dispersion of [Mg/Fe] reportedhere and the quite different behaviour of [Ba/Fe] indicates, accordingto this interpretation, that Mg and Ba are predominantly synthesised indifferent progenitor mass ranges.Table \ref{gftable} is only available in electronic form athttp://www.edpsciences.org

Reappraising the Spite Lithium Plateau: Extremely Thin and Marginally Consistent with WMAP Data
The lithium abundance in 62 halo dwarfs is determined from accurateequivalent widths reported in the literature and an improved infraredflux method temperature scale. The Li abundance of 41 plateau stars(those with Teff>6000 K) is found to be independent oftemperature and metallicity, with a star-to-star scatter of only 0.06dex over a broad range of temperatures (6000K

A CCD imaging search for wide metal-poor binaries
We explored the regions within a radius of 25 arcsec around 473 nearby,low-metallicity G- to M-type stars using (VR)I optical filters andsmall-aperture telescopes. About 10% of the sample was searched up toangular separations of 90 arcsec. We applied photometric and astrometrictechniques to detect true physical companions to the targets. The greatmajority of the sample stars was drawn from the Carney-Latham surveys;their metallicities range from roughly solar to [Fe/H] = -3.5 dex. OurI-band photometric survey detected objects that are between 0 and 5 magfainter (completeness) than the target stars; the maximum dynamicalrange of our exploration is 9 mag. We also investigated the literature,and inspected images from the Digitized Sky Surveys to complete oursearch. By combining photometric and proper motion measurements, weretrieved 29 previously known companions, and identified 13 new propermotion companions. Near-infrared 2MASS photometry is provided for thegreat majority of them. Low-resolution optical spectroscopy (386-1000nm) was obtained for eight of the new companion stars. Thesespectroscopic data confirm them as cool, late-type, metal-depleteddwarfs, with spectral classes from esdK7 to sdM3. After comparison withlow-metallicity evolutionary models, we estimate the masses of theproper motion companion stars to be in the range 0.5-0.1Mȯ. They are moving around their primary stars atprojected separations between ˜32 and ˜57 000 AU. These orbitalsizes are very similar to those of solar-metallicity stars of the samespectral types. Our results indicate that about 15% of the metal-poorstars have stellar companions in wide orbits, which is in agreement withthe binary fraction observed among main sequence G- to M-type stars andT Tauri stars.Based on observations made with the IAC80 telescope operated on theisland of Tenerife by the Instituto de Astrofísica de Canarias inthe Spanish Observatorio del Teide; also based on observations made withthe 2.2 m telescope of the German-Spanish Calar Alto Observatory(Almería, Spain), the William Herschel Telescope (WHT) operatedon the island of La Palma by the Isaac Newton Group in the SpanishObservatorio del Roque de los Muchachos (ORM) of the Instituto deAstrofísica de Canarias; and the Telescopio Nazionale Galileo(TNG) at the ORM.The complete Table 1 is only available in electronic form at the CDS viaanonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or viahttp://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/419/167

The Geneva-Copenhagen survey of the Solar neighbourhood. Ages, metallicities, and kinematic properties of ˜14 000 F and G dwarfs
We present and discuss new determinations of metallicity, rotation, age,kinematics, and Galactic orbits for a complete, magnitude-limited, andkinematically unbiased sample of 16 682 nearby F and G dwarf stars. Our˜63 000 new, accurate radial-velocity observations for nearly 13 500stars allow identification of most of the binary stars in the sampleand, together with published uvbyβ photometry, Hipparcosparallaxes, Tycho-2 proper motions, and a few earlier radial velocities,complete the kinematic information for 14 139 stars. These high-qualityvelocity data are supplemented by effective temperatures andmetallicities newly derived from recent and/or revised calibrations. Theremaining stars either lack Hipparcos data or have fast rotation. Amajor effort has been devoted to the determination of new isochrone agesfor all stars for which this is possible. Particular attention has beengiven to a realistic treatment of statistical biases and errorestimates, as standard techniques tend to underestimate these effectsand introduce spurious features in the age distributions. Our ages agreewell with those by Edvardsson et al. (\cite{edv93}), despite severalastrophysical and computational improvements since then. We demonstrate,however, how strong observational and theoretical biases cause thedistribution of the observed ages to be very different from that of thetrue age distribution of the sample. Among the many basic relations ofthe Galactic disk that can be reinvestigated from the data presentedhere, we revisit the metallicity distribution of the G dwarfs and theage-metallicity, age-velocity, and metallicity-velocity relations of theSolar neighbourhood. Our first results confirm the lack of metal-poor Gdwarfs relative to closed-box model predictions (the ``G dwarfproblem''), the existence of radial metallicity gradients in the disk,the small change in mean metallicity of the thin disk since itsformation and the substantial scatter in metallicity at all ages, andthe continuing kinematic heating of the thin disk with an efficiencyconsistent with that expected for a combination of spiral arms and giantmolecular clouds. Distinct features in the distribution of the Vcomponent of the space motion are extended in age and metallicity,corresponding to the effects of stochastic spiral waves rather thanclassical moving groups, and may complicate the identification ofthick-disk stars from kinematic criteria. More advanced analyses of thisrich material will require careful simulations of the selection criteriafor the sample and the distribution of observational errors.Based on observations made with the Danish 1.5-m telescope at ESO, LaSilla, Chile, and with the Swiss 1-m telescope at Observatoire deHaute-Provence, France.Complete Tables 1 and 2 are only available in electronic form at the CDSvia anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or viahttp://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/418/989

Empirically Constrained Color-Temperature Relations. II. uvby
A new grid of theoretical color indices for the Strömgren uvbyphotometric system has been derived from MARCS model atmospheres and SSGsynthetic spectra for cool dwarf and giant stars having-3.0<=[Fe/H]<=+0.5 and 3000<=Teff<=8000 K. Atwarmer temperatures (i.e., 8000-2.0. To overcome thisproblem, the theoretical indices at intermediate and high metallicitieshave been corrected using a set of color calibrations based on fieldstars having well-determined distances from Hipparcos, accurateTeff estimates from the infrared flux method, andspectroscopic [Fe/H] values. In contrast with Paper I, star clustersplayed only a minor role in this analysis in that they provided asupplementary constraint on the color corrections for cool dwarf starswith Teff<=5500 K. They were mainly used to test thecolor-Teff relations and, encouragingly, isochrones thatemploy the transformations derived in this study are able to reproducethe observed CMDs (involving u-v, v-b, and b-y colors) for a number ofopen and globular clusters (including M67, the Hyades, and 47 Tuc)rather well. Moreover, our interpretations of such data are verysimilar, if not identical, with those given in Paper I from aconsideration of BV(RI)C observations for the sameclusters-which provides a compelling argument in support of thecolor-Teff relations that are reported in both studies. Inthe present investigation, we have also analyzed the observedStrömgren photometry for the classic Population II subdwarfs,compared our ``final'' (b-y)-Teff relationship with thosederived empirically in a number of recent studies and examined in somedetail the dependence of the m1 index on [Fe/H].Based, in part, on observations made with the Nordic Optical Telescope,operated jointly on the island of La Palma by Denmark, Finland, Iceland,Norway, and Sweden, in the Spanish Observatorio del Roque de losMuchachos of the Instituto de Astrofisica de Canarias.Based, in part, on observations obtained with the Danish 1.54 mtelescope at the European Southern Observatory, La Silla, Chile.

Improved Astrometry and Photometry for the Luyten Catalog. II. Faint Stars and the Revised Catalog
We complete construction of a catalog containing improved astrometry andnew optical/infrared photometry for the vast majority of NLTT starslying in the overlap of regions covered by POSS I and by the secondincremental Two Micron All Sky Survey (2MASS) release, approximately 44%of the sky. The epoch 2000 positions are typically accurate to 130 mas,the proper motions to 5.5 mas yr-1, and the V-J colors to0.25 mag. Relative proper motions of binary components are measured to 3mas yr-1. The false-identification rate is ~1% for11<~V<~18 and substantially less at brighter magnitudes. Theseimprovements permit the construction of a reduced proper-motion diagramthat, for the first time, allows one to classify NLTT stars intomain-sequence (MS) stars, subdwarfs (SDs), and white dwarfs (WDs). We inturn use this diagram to analyze the properties of both our catalog andthe NLTT catalog on which it is based. In sharp contrast to popularbelief, we find that NLTT incompleteness in the plane is almostcompletely concentrated in MS stars, and that SDs and WDs are detectedalmost uniformly over the sky δ>-33deg. Our catalogwill therefore provide a powerful tool to probe these populationsstatistically, as well as to reliably identify individual SDs and WDs.

A New Procedure for the Photometric Parallax Estimation
We present a new procedure for photometric parallax estimation. The datafor 1236 stars provide calibrations between the absolute magnitudeoffset from the Hyades main-sequence and the ultraviolet-excess foreight different (B-V)0 colour-index intervals, (0.3 0.4),(0.4 0.5), (0.5 0.6), (0.6 0.7), (0.7 0.8), (0.8 0.9), (0.9 1.0) and(1.0 1.1). The mean difference between the original and estimatedabsolute magnitudes and the corresponding standard deviation are rathersmall, +0.0002 and +/-0.0613 mag. The procedure has been adapted to theSloan photometry by means of colour equations and applied to a set ofartificial stars with different metallicities. The comparison of theabsolute magnitudes estimated by the new procedure and the canonical oneindicates that a single colour-magnitude diagram does not supplyreliable absolute magnitudes for stars with large range of metallicity.

A Survey of Proper-Motion Stars. XVI. Orbital Solutions for 171 Single-lined Spectroscopic Binaries
We report 25,563 radial velocity measurements for 1359 single-linedstars in the Carney-Latham sample of 1464 stars selected for high propermotion. For 171 of these, we present spectroscopic orbital solutions. Wefind no obvious difference between the binary characteristics in thehalo and the disk populations. The observed frequency is the same, andthe period distributions are consistent with the hypothesis that the twosets of binaries were drawn from the same parent population. Thissuggests that metallicity in general, and radiative opacities inparticular, have little influence over the fragmentation process thatleads to short-period binaries. All the binaries with periods shorterthan 10 days have nearly circular orbits, while the binaries withperiods longer than 20 days exhibit a wide range of eccentricities and amedian value of 0.37. For the metal-poor high-velocity halo binaries inour sample, the transition from circular to eccentric orbits appears tooccur at about 20 days, supporting the conclusion that tidalcircularization on the main sequence is important for the oldestbinaries in the Galaxy. Some of the results presented here usedobservations made with the Multiple Mirror Telescope, a joint facilityof the Smithsonian Institution and the University of Arizona.

Stellar Mixing and the Primordial Lithium Abundance
We compare the properties of recent samples of the lithium abundances inhalo stars to one another and to the predictions of theoretical modelsincluding rotational mixing, and we examine the data for trends withmetal abundance. We apply two statistical tests to the data: aKolomorgorov-Smirnov (K-S) test sensitive to the behavior around thesample median, and Monte Carlo tests of the probability to draw theobserved number of outliers from the theoretical distributions. We findfrom a K-S test that in the absence of any correction for chemicalevolution, the Ryan, Norris, & Beers (RNB) sample is fullyconsistent with mild rotational mixing induced depletion and, therefore,with an initial lithium abundance higher than the observed value. Testsfor outliers depend sensitively on the threshold for defining theirpresence, but we find a 10%-45% probability that the RNB sample is drawnfrom the rotationally mixed models with a 0.2 dex median depletion withlower probabilities corresponding to higher depletion factors. Includingor excluding the one upper limit in the sample changes the absoluteprobabilities but does not affect the overall conclusions. When chemicalevolution trends (Li/H vs. Fe/H) are included in our analysis we findthat the dispersion in the RNB sample is not explained by chemicalevolution; the inferred bounds on lithium depletion from rotationalmixing are similar to those derived from models without chemicalevolution. Finally, we explore the differences between the RNB sampleand other halo star data sets. We find that differences in theequivalent width measurements are primarily responsible for differentobservational conclusions concerning the lithium dispersion in halostars. The different data sets are all consistent with mild stellardepletion, but the systematic errors arising from differentobservational data sets are a major component of the error budget andneed to be addressed. The implications for cosmology are discussed. Wefind that the standard big bang nucleosynthesis predicted lithiumabundance that corresponds to the deuterium abundance inferred fromobservations of high-redshift, low-metallicity QSO absorbers requireshalo star lithium depletion in an amount consistent with that from ourmodels of rotational mixing but inconsistent with no depletion.

The u'g'r'i'z' Standard-Star System
We present the 158 standard stars that define the u'g'r'i'z' photometricsystem. These stars form the basis for the photometric calibration ofthe Sloan Digital Sky Survey. The defining instrument system andfilters, the observing process, the reduction techniques, and thesoftware used to create the stellar network are all described. Webriefly discuss the history of the star selection process, thederivation of a set of transformation equations for theUBVRCIC system, and plans for future work.

A search for previously unrecognized metal-poor subdwarfs in the Hipparcos astrometric catalogue
We have identified 317 stars included in the Hipparcos astrometriccatalogue that have parallaxes measured to a precision of better than 15per cent, and the location of which in the(MV,(B-V)T) diagram implies a metallicitycomparable to or less than that of the intermediate-abundance globularcluster M5. We have undertaken an extensive literature search to locateStrömgren, Johnson/Cousins and Walraven photometry for over 120stars. In addition, we present new UBV(RI)C photometry of 201of these candidate halo stars, together with similar data for a further14 known metal-poor subdwarfs. These observations provide the firstextensive data set of RCIC photometry ofmetal-poor, main-sequence stars with well-determined trigonometricparallaxes. Finally, we have obtained intermediate-resolution opticalspectroscopy of 175 stars. 47 stars still lack sufficient supplementaryobservations for population classification; however, we are able toestimate abundances for 270 stars, or over 80 per cent of the sample.The overwhelming majority have near-solar abundance, with theirinclusion in the present sample stemming from errors in the colourslisted in the Hipparcos catalogue. Only 44 stars show consistentevidence of abundances below [Fe/H]=-1.0. Nine are additions to thesmall sample of metal-poor subdwarfs with accurate photometry. Weconsider briefly the implication of these results for clustermain-sequence fitting.

Catalogue of [Fe/H] determinations for FGK stars: 2001 edition
The catalogue presented here is a compilation of published atmosphericparameters (Teff, log g, [Fe/H]) obtained from highresolution, high signal-to-noise spectroscopic observations. This newedition has changed compared to the five previous versions. It is nowrestricted to intermediate and low mass stars (F, G and K stars). Itcontains 6354 determinations of (Teff, log g, [Fe/H]) for3356 stars, including 909 stars in 79 stellar systems. The literature iscomplete between January 1980 and December 2000 and includes 378references. The catalogue is made up of two tables, one for field starsand one for stars in galactic associations, open and globular clustersand external galaxies. The catalogue is distributed through the CDSdatabase. Access to the catalogue with cross-identification to othersets of data is also possible with VizieR (Ochsenbein et al.\cite{och00}). The catalogue (Tables 1 and 2) is only available inelectronic form at the CDS via anonymous ftp to cdsarc.u-strasbg.fr(130.79.128.5) or viahttp://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/373/159 and VizieRhttp://vizier.u-strasbg.fr/.

The Mass of the Milky Way from a uvby - β Survey of High-Velocity Stars
Not Available

The Spite Lithium Plateau: Ultrathin but Postprimordial
We have studied 23 very metal-poor field turnoff stars, specificallychosen to enable a precise measurement of the dispersion in the lithiumabundance of the Spite Li plateau. We concentrated on stars having anarrow range of effective temperature and very low metallicities([Fe/H]<~-2.5) to reduce the effects of systematic errors and havemade particular efforts to minimize random errors. A typical statisticalerror for our abundances is 0.033 dex (1 sigma), which represents afactor of 2 improvement on most previous studies. Our sample does notexhibit a trend with effective temperature, although the temperaturerange is limited. However, for -3.6<[Fe/H]<-2.3 we do recover adependence on metallicity at dA(Li)/d[Fe/H]=0.118+/-0.023 (1 sigma) dexper dex, almost the same level as discussed previously. Earlier claimsfor a lack of dependence of A(Li) on abundance are shown to have arisenprobably from noisier estimates of effective temperatures andmetallicities, which have erased the real trend. The dependence isconcordant with theoretical predictions of Galactic chemical evolution(GCE) of Li (even in such metal-poor stars) and with the published levelof ^6Li in two of the stars of our sample, which we use to infer the GCE^7Li contribution. One of the 23 stars, G186-26, was known already to bestrongly Li-depleted. Of the remaining 22 objects, 21 have abundancesconsistent with an observed spread about the metallicity trend of a mere0.031 dex (1 sigma). Because the formal errors are 0.033 dex, weconclude that the intrinsic spread is effectively zero at the verymetal-poor halo turnoff. This is established at much higher precisionthan previous studies (~0.06-0.08 dex). The essentially zero intrinsicspread leads to the conclusion that either these stars have all changedtheir surface Li abundances very uniformly, or else they exhibit closeto the primordial abundance sought for its cosmological significance. Wecannot rule out a uniform depletion mechanism, but economy of hypothesissupports the latter interpretation. The lack of spread in the A(Li)abundances limits permissible depletion by rotationally induced mixingmodels to less than 0.1 dex. Correcting for the GCE contribution to both^6Li and ^7Li, we infer a primordial abundance A(Li)_p~=2.00 dex, withthree systematic uncertainties of up to 0.1 dex each depending onuncertainties in the effective temperature scale, stellar atmospheremodels, and correction for GCE. (This value rests on aneffective-temperature zero-point set by Magain's and Bell & Oke'sb-y calibrations of metal-poor stars and the model atmospheres withoutconvective overshoot.) We predict that observations of Li in extremelylow-metallicity stars, having [Fe/H]<-3, will yield smaller A(Li)values than the bulk of stars in this sample, consistent with a lowprimordial abundance. The difference between our field star observationsand published M92 data suggests real field-to-cluster differences. Thismay indicate different angular momentum evolutionary histories, withinteractions between protostellar disks in the dense globular clusterenvironments possibly being responsible. Further study of Li in globularclusters and in very metal-poor field samples is required to clarify thesituation.

Stars in the Galactic Halo
Not Available

Додај нови чланак


Линкови у сродству са темом

  • - Нема линкова -
Додај нови линк


Чланови следећих група \:


Посматрања и Астрометриски подаци

Сазвежђа:Лав
Ректацензија:09h29m15.56s
Deклинација:+08°38'00.5"
Apparent магнитуда:11.118
Proper motion RA:199
Proper motion Dec:-307.8
B-T magnitude:11.67
V-T magnitude:11.164

Каталог и designations:
Proper имена   (Edit)
TYCHO-2 2000TYC 820-724-1
USNO-A2.0USNO-A2 0975-06254675
HIPHIP 46516

→ Захтевај још каталога од VizieR