目录
图像
上传图像
DSS Images Other Images
相关文章
Unconstrained Astrometric Orbits for Hipparcos Stars with Stochastic Solutions A considerable number of astrometric binaries whose positions on the skydo not obey the standard model of mean position, parallax, and linearproper motion were observed by the Hipparcos satellite. Some of themremain undiscovered, and their observational data have not been properlyprocessed with the more adequate astrometric model that includesnonlinear orbital motion. We develop an automated algorithm, based on``genetic optimization,'' to solve the orbital fitting problem in themost difficult setup, when no prior information about the orbitalelements is available (from, e.g., spectroscopic data or radial velocitymonitoring). We also offer a technique to accurately compute theprobability that an orbital fit is bogus, that is, that an orbitalsolution is obtained for a single star, and to estimate the probabilitydistributions for the fitting orbital parameters. We test this method onHipparcos stars with known orbital solutions in the catalog and furtherapply it to 1561 stars with stochastic solutions, which may beunresolved binaries. At a confidence level of 99%, orbital fits areobtained for 65 stars, most of which have not been known as binary. Itis found that reliable astrometric fits can be obtained even if theperiod is somewhat longer than the time span of the Hipparcos mission,that is, if the orbit is not closed. A few of the new probable binarieswith A-type primaries with periods 444-2015 days are chemically peculiarstars, including Ap and λ Bootis types. The anomalous spectra ofthese stars are explained by admixtures of light from the unresolved,sufficiently bright and massive companions. We estimate the apparentorbits of four stars that have been identified as members of the ~300Myr old Ursa Major kinematic group. Another four new nearby binaries mayinclude low-mass M-type or brown dwarf companions. Follow-upspectroscopic observations in conjunction with more accurate inclinationestimates will lead to better estimates of the secondary mass. Similarastrometric models and algorithms can be used for binary stars andplanet hosts observed by SIM and Gaia.
| Effective temperature scale and bolometric corrections from 2MASS photometry We present a method to determine effective temperatures, angularsemi-diameters and bolometric corrections for population I and II FGKtype stars based on V and 2MASS IR photometry. Accurate calibration isaccomplished by using a sample of solar analogues, whose averagetemperature is assumed to be equal to the solar effective temperature of5777 K. By taking into account all possible sources of error we estimateassociated uncertainties to better than 1% in effective temperature andin the range 1.0-2.5% in angular semi-diameter for unreddened stars.Comparison of our new temperatures with other determinations extractedfrom the literature indicates, in general, remarkably good agreement.These results suggest that the effective temperaure scale of FGK starsis currently established with an accuracy better than 0.5%-1%. Theapplication of the method to a sample of 10 999 dwarfs in the Hipparcoscatalogue allows us to define temperature and bolometric correction (Kband) calibrations as a function of (V-K), [m/H] and log g. Bolometriccorrections in the V and K bands as a function of T_eff, [m/H] and log gare also given. We provide effective temperatures, angularsemi-diameters, radii and bolometric corrections in the V and K bandsfor the 10 999 FGK stars in our sample with the correspondinguncertainties.
| Spectroscopy and Photometry of the Double-lined Binary HD 149420 We have used new spectroscopic and photometric observations of HD 149420to obtain an improved orbital element solution and determine some basicproperties of the system. This double-lined binary has an orbital periodof 3.39430 days, a circular orbit, and a mass ratio of 0.52. The primaryis somewhat evolved, with an A9 IV spectral type, while the secondary isestimated to be an F5: dwarf. The secondary may be synchronouslyrotating, but the primary is rotating substantially slower than itssynchronous velocity. Our photometric observations confirm the lightvariability and period found by Hipparcos. We determine a photometricperiod of 1.698 days, essentially half the value of the orbital period,with a peak-to-peak amplitude of 0.028 mag in V. In addition to thisellipsoidal light variation, we also detect more rapid, low-amplitudevariability with a period of 0.076082 days and a peak-to-peak Vamplitude of 0.008 mag, as well as a possible second short 0.059256 dayperiod with a peak-to-peak amplitude of only 0.005 mag. This indicatesthat the A9 IV primary in HD 149420 is a pulsating δ Scutivariable. Our binary model that best fits both the radial velocity andphotometric observations indicates the possibility of extremely shallowgrazing eclipses, a circumstance not unexpected given the large minimummasses from the orbital solution, the evolved nature of the primary, andthe short orbital period.
| The Geneva-Copenhagen survey of the Solar neighbourhood. Ages, metallicities, and kinematic properties of 14 000 F and G dwarfs We present and discuss new determinations of metallicity, rotation, age,kinematics, and Galactic orbits for a complete, magnitude-limited, andkinematically unbiased sample of 16 682 nearby F and G dwarf stars. Our63 000 new, accurate radial-velocity observations for nearly 13 500stars allow identification of most of the binary stars in the sampleand, together with published uvbyβ photometry, Hipparcosparallaxes, Tycho-2 proper motions, and a few earlier radial velocities,complete the kinematic information for 14 139 stars. These high-qualityvelocity data are supplemented by effective temperatures andmetallicities newly derived from recent and/or revised calibrations. Theremaining stars either lack Hipparcos data or have fast rotation. Amajor effort has been devoted to the determination of new isochrone agesfor all stars for which this is possible. Particular attention has beengiven to a realistic treatment of statistical biases and errorestimates, as standard techniques tend to underestimate these effectsand introduce spurious features in the age distributions. Our ages agreewell with those by Edvardsson et al. (\cite{edv93}), despite severalastrophysical and computational improvements since then. We demonstrate,however, how strong observational and theoretical biases cause thedistribution of the observed ages to be very different from that of thetrue age distribution of the sample. Among the many basic relations ofthe Galactic disk that can be reinvestigated from the data presentedhere, we revisit the metallicity distribution of the G dwarfs and theage-metallicity, age-velocity, and metallicity-velocity relations of theSolar neighbourhood. Our first results confirm the lack of metal-poor Gdwarfs relative to closed-box model predictions (the ``G dwarfproblem''), the existence of radial metallicity gradients in the disk,the small change in mean metallicity of the thin disk since itsformation and the substantial scatter in metallicity at all ages, andthe continuing kinematic heating of the thin disk with an efficiencyconsistent with that expected for a combination of spiral arms and giantmolecular clouds. Distinct features in the distribution of the Vcomponent of the space motion are extended in age and metallicity,corresponding to the effects of stochastic spiral waves rather thanclassical moving groups, and may complicate the identification ofthick-disk stars from kinematic criteria. More advanced analyses of thisrich material will require careful simulations of the selection criteriafor the sample and the distribution of observational errors.Based on observations made with the Danish 1.5-m telescope at ESO, LaSilla, Chile, and with the Swiss 1-m telescope at Observatoire deHaute-Provence, France.Complete Tables 1 and 2 are only available in electronic form at the CDSvia anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or viahttp://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/418/989
| Radial velocities. Measurements of 2800 B2-F5 stars for HIPPARCOS Radial velocities have been determined for a sample of 2930 B2-F5 stars,95% observed by the Hipparcos satellite in the north hemisphere and 80%without reliable radial velocity up to now. Observations were obtainedat the Observatoire de Haute Provence with a dispersion of 80Ä,mm(-1) with the aim of studying stellar and galactic dynamics.Radial velocities have been measured by correlation with templates ofthe same spectral class. The mean obtained precision is 3.0 km s(-1)with three observations. A new MK spectral classification is estimatedfor all stars. Based on observations made at the Haute ProvenceObservatory, France and on data from The Hipparcos Catalogue, ESA.Tables 4, 5 and 6 are only available in electronic form at the CDS viaanonymous ftp to cdsarc.u-strasbg.fr or viahttp://cdsweb.u-strasbg.fr/Abstract.htm
|
提交文章
相关链接
提交链接
下列团体成员
|
观测天体数据
目录:
|