Inici     Començant     Sobreviure a l'Univers    
Inhabited Sky
    News@Sky     Astro Fotografia     La Col·lecció     Fòrum     Blog New!     FAQ     Premsa     Login  

HD 30876


Contingut

Imatges

Carregar la teva Imatge

DSS Images   Other Images


Articles Relacionats

The Geneva-Copenhagen survey of the solar neighbourhood. III. Improved distances, ages, and kinematics
Context: Ages, chemical compositions, velocity vectors, and Galacticorbits for stars in the solar neighbourhood are fundamental test datafor models of Galactic evolution. The Geneva-Copenhagen Survey of theSolar Neighbourhood (Nordström et al. 2004; GCS), amagnitude-complete, kinematically unbiased sample of 16 682 nearby F andG dwarfs, is the largest available sample with complete data for starswith ages spanning that of the disk. Aims: We aim to improve theaccuracy of the GCS data by implementing the recent revision of theHipparcos parallaxes. Methods: The new parallaxes yield improvedastrometric distances for 12 506 stars in the GCS. We also use theparallaxes to verify the distance calibration for uvby? photometryby Holmberg et al. (2007, A&A, 475, 519; GCS II). We add newselection criteria to exclude evolved cool stars giving unreliableresults and derive distances for 3580 stars with large parallax errorsor not observed by Hipparcos. We also check the GCS II scales of T_effand [Fe/H] and find no need for change. Results: Introducing thenew distances, we recompute MV for 16 086 stars, and U, V, W,and Galactic orbital parameters for the 13 520 stars that also haveradial-velocity measurements. We also recompute stellar ages from thePadova stellar evolution models used in GCS I-II, using the new valuesof M_V, and compare them with ages from the Yale-Yonsei andVictoria-Regina models. Finally, we compare the observed age-velocityrelation in W with three simulated disk heating scenarios to show thepotential of the data. Conclusions: With these revisions, thebasic data for the GCS stars should now be as reliable as is possiblewith existing techniques. Further improvement must await consolidationof the T_eff scale from angular diameters and fluxes, and the Gaiatrigonometric parallaxes. We discuss the conditions for improvingcomputed stellar ages from new input data, and for distinguishingdifferent disk heating scenarios from data sets of the size andprecision of the GCS.Full Table 1 is only available in electronic form at the CDS viaanonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or viahttp://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/501/941

The main sequence from F to K stars of the solar neighbourhood in SDSS colours
For an understanding of Galactic stellar populations in the SDSS filtersystem well defined stellar samples are needed. The nearby stars providea complete stellar sample representative for the thin disc population.We compare the filter transformations of different authors applied tothe main sequence stars from F to K dwarfs to SDSS filter system anddiscuss the properties of the main sequence. The location of the meanmain sequence in colour-magnitude diagrams is very sensitive tosystematic differences in the filter transformation. A comparison withfiducial sequences of star clusters observed in g', r', and i' show goodagreement. Theoretical isochrones from Padua and from Dartmouth havestill some problems, especially in the (r-i) colours.

Structure and Evolution of Nearby Stars with Planets. II. Physical Properties of ~1000 Cool Stars from the SPOCS Catalog
We derive detailed theoretical models for 1074 nearby stars from theSPOCS (Spectroscopic Properties of Cool Stars) Catalog. The Californiaand Carnegie Planet Search has obtained high-quality (R~=70,000-90,000,S/N~=300-500) echelle spectra of over 1000 nearby stars taken with theHamilton spectrograph at Lick Observatory, the HIRES spectrograph atKeck, and UCLES at the Anglo Australian Observatory. A uniform analysisof the high-resolution spectra has yielded precise stellar parameters(Teff, logg, vsini, [M/H], and individual elementalabundances for Fe, Ni, Si, Na, and Ti), enabling systematic erroranalyses and accurate theoretical stellar modeling. We have created alarge database of theoretical stellar evolution tracks using the YaleStellar Evolution Code (YREC) to match the observed parameters of theSPOCS stars. Our very dense grids of evolutionary tracks eliminate theneed for interpolation between stellar evolutionary tracks and allowprecise determinations of physical stellar parameters (mass, age,radius, size and mass of the convective zone, surface gravity, etc.).Combining our stellar models with the observed stellar atmosphericparameters and uncertainties, we compute the likelihood for each set ofstellar model parameters separated by uniform time steps along thestellar evolutionary tracks. The computed likelihoods are used for aBayesian analysis to derive posterior probability distribution functionsfor the physical stellar parameters of interest. We provide a catalog ofphysical parameters for 1074 stars that are based on a uniform set ofhigh-quality spectral observations, a uniform spectral reductionprocedure, and a uniform set of stellar evolutionary models. We explorethis catalog for various possible correlations between stellar andplanetary properties, which may help constrain the formation anddynamical histories of other planetary systems.

Pulkovo compilation of radial velocities for 35495 stars in a common system.
Not Available

An activity catalogue of southern stars
We have acquired high-resolution echelle spectra of 225 F6-M5 type starsin the Southern hemisphere. The stars are targets or candidates to betargets for the Anglo-Australian Planet Search. CaII H& K line coreswere used to derive activity indices for all of these objects. Theindices were converted to the Mt. Wilson system of measurements andlogR'HK values determined. A number of these stars had nopreviously derived activity indices. In addition, we have also includedthe stars from Tinney et al. using our Mt. Wilson calibration. Theradial-velocity instability (also known as jitter) level was determinedfor all 21 planet-host stars in our data set. We find the jitter to beat a level considerably below the radial-velocity signatures in all butone of these systems. 19 stars from our sample were found to be active(logR'HK > -4.5) and thus have high levels of jitter.Radial-velocity analysis for planetary companions to these stars shouldproceed with caution.

Effective temperature scale and bolometric corrections from 2MASS photometry
We present a method to determine effective temperatures, angularsemi-diameters and bolometric corrections for population I and II FGKtype stars based on V and 2MASS IR photometry. Accurate calibration isaccomplished by using a sample of solar analogues, whose averagetemperature is assumed to be equal to the solar effective temperature of5777 K. By taking into account all possible sources of error we estimateassociated uncertainties to better than 1% in effective temperature andin the range 1.0-2.5% in angular semi-diameter for unreddened stars.Comparison of our new temperatures with other determinations extractedfrom the literature indicates, in general, remarkably good agreement.These results suggest that the effective temperaure scale of FGK starsis currently established with an accuracy better than 0.5%-1%. Theapplication of the method to a sample of 10 999 dwarfs in the Hipparcoscatalogue allows us to define temperature and bolometric correction (Kband) calibrations as a function of (V-K), [m/H] and log g. Bolometriccorrections in the V and K bands as a function of T_eff, [m/H] and log gare also given. We provide effective temperatures, angularsemi-diameters, radii and bolometric corrections in the V and K bandsfor the 10 999 FGK stars in our sample with the correspondinguncertainties.

How Dry is the Brown Dwarf Desert? Quantifying the Relative Number of Planets, Brown Dwarfs, and Stellar Companions around Nearby Sun-like Stars
Sun-like stars have stellar, brown dwarf, and planetary companions. Tohelp constrain their formation and migration scenarios, we analyze theclose companions (orbital period <5 yr) of nearby Sun-like stars. Byusing the same sample to extract the relative numbers of stellar, browndwarf, and planetary companions, we verify the existence of a very drybrown dwarf desert and describe it quantitatively. With decreasing mass,the companion mass function drops by almost 2 orders of magnitude from 1Msolar stellar companions to the brown dwarf desert and thenrises by more than an order of magnitude from brown dwarfs toJupiter-mass planets. The slopes of the planetary and stellar companionmass functions are of opposite sign and are incompatible at the 3σ level, thus yielding a brown dwarf desert. The minimum number ofcompanions per unit interval in log mass (the driest part of the desert)is at M=31+25-18MJ. Approximately 16%of Sun-like stars have close (P<5 yr) companions more massive thanJupiter: 11%+/-3% are stellar, <1% are brown dwarf, and 5%+/-2% aregiant planets. The steep decline in the number of companions in thebrown dwarf regime, compared to the initial mass function of individualstars and free-floating brown dwarfs, suggests either a differentspectrum of gravitational fragmentation in the formation environment orpost-formation migratory processes disinclined to leave brown dwarfs inclose orbits.

Spectroscopic Properties of Cool Stars (SPOCS). I. 1040 F, G, and K Dwarfs from Keck, Lick, and AAT Planet Search Programs
We present a uniform catalog of stellar properties for 1040 nearby F, G,and K stars that have been observed by the Keck, Lick, and AAT planetsearch programs. Fitting observed echelle spectra with synthetic spectrayielded effective temperature, surface gravity, metallicity, projectedrotational velocity, and abundances of the elements Na, Si, Ti, Fe, andNi, for every star in the catalog. Combining V-band photometry andHipparcos parallaxes with a bolometric correction based on thespectroscopic results yielded stellar luminosity, radius, and mass.Interpolating Yonsei-Yale isochrones to the luminosity, effectivetemperature, metallicity, and α-element enhancement of each staryielded a theoretical mass, radius, gravity, and age range for moststars in the catalog. Automated tools provide uniform results and makeanalysis of such a large sample practical. Our analysis method differsfrom traditional abundance analyses in that we fit the observed spectrumdirectly, rather than trying to match equivalent widths, and wedetermine effective temperature and surface gravity from the spectrumitself, rather than adopting values based on measured photometry orparallax. As part of our analysis, we determined a new relationshipbetween macroturbulence and effective temperature on the main sequence.Detailed error analysis revealed small systematic offsets with respectto the Sun and spurious abundance trends as a function of effectivetemperature that would be inobvious in smaller samples. We attempted toremove these errors by applying empirical corrections, achieving aprecision per spectrum of 44 K in effective temperature, 0.03 dex inmetallicity, 0.06 dex in the logarithm of gravity, and 0.5 kms-1 in projected rotational velocity. Comparisons withprevious studies show only small discrepancies. Our spectroscopicallydetermined masses have a median fractional precision of 15%, but theyare systematically 10% higher than masses obtained by interpolatingisochrones. Our spectroscopic radii have a median fractional precisionof 3%. Our ages from isochrones have a precision that variesdramatically with location in the Hertzsprung-Russell diagram. We planto extend the catalog by applying our automated analysis technique toother large stellar samples.

The Planet-Metallicity Correlation
We have recently carried out spectral synthesis modeling to determineTeff, logg, vsini, and [Fe/H] for 1040 FGK-type stars on theKeck, Lick, and Anglo-Australian Telescope planet search programs. Thisis the first time that a single, uniform spectroscopic analysis has beenmade for every star on a large Doppler planet search survey. We identifya subset of 850 stars that have Doppler observations sufficient todetect uniformly all planets with radial velocity semiamplitudes K>30m s-1 and orbital periods shorter than 4 yr. From this subsetof stars, we determine that fewer than 3% of stars with-0.5<[Fe/H]<0.0 have Doppler-detected planets. Above solarmetallicity, there is a smooth and rapid rise in the fraction of starswith planets. At [Fe/H]>+0.3 dex, 25% of observed stars have detectedgas giant planets. A power-law fit to these data relates the formationprobability for gas giant planets to the square of the number of metalatoms. High stellar metallicity also appears to be correlated with thepresence of multiple-planet systems and with the total detected planetmass. This data set was examined to better understand the origin of highmetallicity in stars with planets. None of the expected fossilsignatures of accretion are observed in stars with planets relative tothe general sample: (1) metallicity does not appear to increase as themass of the convective envelopes decreases, (2) subgiants with planetsdo not show dilution of metallicity, (3) no abundance variations for Na,Si, Ti, or Ni are found as a function of condensation temperature, and(4) no correlations between metallicity and orbital period oreccentricity could be identified. We conclude that stars with extrasolarplanets do not have an accretion signature that distinguishes them fromother stars; more likely, they are simply born in higher metallicitymolecular clouds.Based on observations obtained at Lick and Keck Observatories, operatedby the University of California, and the Anglo-Australian Observatories.

Meeting the Cool Neighbors. VIII. A Preliminary 20 Parsec Census from the NLTT Catalogue
Continuing our census of late-type dwarfs in the solar neighborhood, wepresent BVRI photometry and optical spectroscopy of 800 mid-type Mdwarfs drawn from the NLTT proper-motion catalog. The targets are takenboth from our own cross-referencing of the NLTT Catalogue and the 2MASSSecond Incremental Data Release, and from the revised NLTT compiledrecently by Salim & Gould. All are identified as nearby-starcandidates based on their location in the(mr,mr-Ks) diagram. Three hundred starsdiscussed here have previous astrometric, photometric, or spectroscopicobservations. We present new BVRI photometry for 101 stars, togetherwith low-resolution spectroscopy of a further 400 dwarfs. In total, wefind that 241 stars are within 20 pc of the Sun, while a further 70 liewithin 1 σ of our distance limit. Combining the present resultswith previous analyses, we have quantitative observations for 1910 ofthe 1913 candidates in our NLTT nearby-star samples. Eight hundredfifteen of those stars have distance estimates of 20 pc or less,including 312 additions to the local census. With our NLTT follow-upobservations essentially complete, we have searched the literature for Kand early-type M dwarfs within the sampling volume covered by the 2MASSsecond release. Comparing the resultant 20 pc census against predictednumbers, derived from the 8 pc luminosity function, shows an overalldeficit of ~20% for stellar systems and ~35% for individual stars.Almost all are likely to be fainter than MJ=7, and at leasthalf are probably as yet undiscovered companions of known nearby stars.Our results suggest that there are relatively few missing systems at thelowest luminosities, MJ>8.5. We discuss possible means ofidentifying the missing stars.

The Geneva-Copenhagen survey of the Solar neighbourhood. Ages, metallicities, and kinematic properties of ˜14 000 F and G dwarfs
We present and discuss new determinations of metallicity, rotation, age,kinematics, and Galactic orbits for a complete, magnitude-limited, andkinematically unbiased sample of 16 682 nearby F and G dwarf stars. Our˜63 000 new, accurate radial-velocity observations for nearly 13 500stars allow identification of most of the binary stars in the sampleand, together with published uvbyβ photometry, Hipparcosparallaxes, Tycho-2 proper motions, and a few earlier radial velocities,complete the kinematic information for 14 139 stars. These high-qualityvelocity data are supplemented by effective temperatures andmetallicities newly derived from recent and/or revised calibrations. Theremaining stars either lack Hipparcos data or have fast rotation. Amajor effort has been devoted to the determination of new isochrone agesfor all stars for which this is possible. Particular attention has beengiven to a realistic treatment of statistical biases and errorestimates, as standard techniques tend to underestimate these effectsand introduce spurious features in the age distributions. Our ages agreewell with those by Edvardsson et al. (\cite{edv93}), despite severalastrophysical and computational improvements since then. We demonstrate,however, how strong observational and theoretical biases cause thedistribution of the observed ages to be very different from that of thetrue age distribution of the sample. Among the many basic relations ofthe Galactic disk that can be reinvestigated from the data presentedhere, we revisit the metallicity distribution of the G dwarfs and theage-metallicity, age-velocity, and metallicity-velocity relations of theSolar neighbourhood. Our first results confirm the lack of metal-poor Gdwarfs relative to closed-box model predictions (the ``G dwarfproblem''), the existence of radial metallicity gradients in the disk,the small change in mean metallicity of the thin disk since itsformation and the substantial scatter in metallicity at all ages, andthe continuing kinematic heating of the thin disk with an efficiencyconsistent with that expected for a combination of spiral arms and giantmolecular clouds. Distinct features in the distribution of the Vcomponent of the space motion are extended in age and metallicity,corresponding to the effects of stochastic spiral waves rather thanclassical moving groups, and may complicate the identification ofthick-disk stars from kinematic criteria. More advanced analyses of thisrich material will require careful simulations of the selection criteriafor the sample and the distribution of observational errors.Based on observations made with the Danish 1.5-m telescope at ESO, LaSilla, Chile, and with the Swiss 1-m telescope at Observatoire deHaute-Provence, France.Complete Tables 1 and 2 are only available in electronic form at the CDSvia anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or viahttp://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/418/989

Extrasolar planets around HD 196050, HD 216437 and HD 160691
We report precise Doppler measurements of the stars HD 216437, HD 196050and HD 160691 obtained with the Anglo-Australian Telescope using theUCLES spectrometer together with an iodine cell as part of theAnglo-Australian Planet Search. Our measurements reveal periodicKeplerian velocity variations that we interpret as evidence for planetsin orbit around these solar type stars. HD 216437 has a period of 1294+/- 250 d, a semi-amplitude of 38 +/- 3 m s-1 and aneccentricity of 0.33 +/- 0.09. The minimum (M sin i) mass of thecompanion is 2.1 +/- 0.3 MJUP and the semi-major axis is 2.4+/- 0.5 au. HD 196050 has a period of 1300 +/- 230 d, a semi-amplitudeof 49 +/- 8 m s-1 and an eccentricity of 0.19 +/- 0.09. Theminimum mass of the companion is 2.8 +/- 0.5 MJUP and thesemi-major axis is 2.4 +/- 0.5 au. We also report further observationsof the metal-rich planet bearing star HD 160691. Our new solutionconfirms the previously reported planet and shows a trend indicating asecond, longer-period companion. These discoveries add to the growingnumbers of mildly eccentric, long-period extrasolar planets aroundmetal-rich Sun-like stars.

K dwarfs and the chemical evolution of the solar cylinder
K dwarfs have lifetimes older than the present age of the Galactic disc,and are thus ideal stars for investigating the chemical evolution of thedisc. We have developed several photometric metallicity indicators for Kdwarfs, based on a sample of accurate spectroscopic metallicities for 34disc and halo G and K dwarfs. The photometric metallicities lead us todevelop a metallicity index for K dwarfs based only on their position inthe colour-absolute-magnitude diagram. Metallicities have beendetermined for 431 single K dwarfs drawn from the Hipparcos catalogue,selecting the stars by absolute magnitude and removing multiple systems.The sample is essentially a complete reckoning of the metal content innearby K dwarfs. We use stellar isochrones to mark the stars by mass,and select a subset of 220 of the stars, which is complete within anarrow mass interval. We fit the data with a model of the chemicalevolution of the solar cylinder. We find that only a modest cosmicscatter is required to fit our age-metallicity relation. The modelassumes two main infall episodes for the formation of the halo-thickdisc and thin disc, respectively. The new data confirm that the solarneighbourhood formed on a long time-scale of the order of 7 Gyr.

Echelle spectroscopy of Caii HK activity in Southern Hemisphere planet search targets
We present the results of ultraviolet echelle spectroscopy of a sampleof 59 F, G, K and M stars from the Anglo-Australian Planet Search targetlist. Caii activity indices, which are essential in the interpretationof planet detection claims, have been determined for these stars andplaced on the Mount Wilson R 'HK system.

A revision of the solar neighbourhood metallicity distribution
We present a revised metallicity distribution of dwarfs in the solarneighbourhood. This distribution is centred on solar metallicity. Weshow that previous metallicity distributions, selected on the basis ofspectral type, are biased against stars with solar metallicity orhigher. A selection of G-dwarf stars is inherently biased againstmetal-rich stars and is not representative of the solar neighbourhoodmetallicity distribution. Using a sample selected on colour, we obtain adistribution where approximately half the stars in the solarneighbourhood have metallicities higher than [Fe/H]=0. The percentage ofmid-metal-poor stars ([Fe/H]<-0.5) is approximately 4 per cent, inagreement with present estimates of the thick disc. In order to have ametallicity distribution comparable to chemical evolution modelpredictions, we convert the star fraction to mass fraction, and showthat another bias against metal-rich stars affects dwarf metallicitydistributions, due to the colour (or spectral type) limits of thesamples. Reconsidering the corrections resulting from the increasingthickness of the stellar disc with age, we show that the simpleclosed-box model with no instantaneous recycling approximation gives areasonable fit to the observed distribution. Comparisons with theage-metallicity relation and abundance ratios suggest that the simpleclosed-box model may be a viable model of the chemical evolution of theGalaxy at solar radius.

A large, complete, volume-limited sample of G-type dwarfs. I. Completion of Stroemgren UVBY photometry
Four-colour photometry of potential dwarf stars of types G0 to K2,selected from the Michigan Spectral Catalogues (Vol. 1-3), has beencarried out. The results are presented in a catalogue containing 4247uvby observations of 3900 stars, all south of δ = -26deg. Theoverall internal rms errors of one observation (transformed to thestandard system) of a program star in the interval 8.5 < V < 10.5are 0.0044, 0.0021, 0.0039, and 0.0059, respectively, in V, b-y, m_1_ ,and c_1_. The purpose of the catalogue, combined with earliercatalogues, is to allow selection of a large, complete, volume-limitedsample of G- and K-type dwarfs, investigate their metallicitydistribution, and compare it to predictions of various models ofgalactic chemical evolution. Future papers in this series will discussthese subjects.

Preliminary Version of the Third Catalogue of Nearby Stars
Not Available

Enviar un nou article


Enllaços Relacionats

  • - No s'ha trobat enllaços -
Enviar un nou enllaç


Membre dels grups següents:


Dades d'Observació i Astrometria

Constel·lació:Caelum
Ascensió Recta:04h49m52.33s
Declinació:-35°06'27.5"
Magnitud Aparent:7.488
Distancia:17.989 parsecs
Moviment propi RA:-25.5
Moviment propi Dec:-114.1
B-T magnitude:8.629
V-T magnitude:7.583

Catàlegs i designacions:
Noms Propis   (Edit)
HD 1989HD 30876
TYCHO-2 2000TYC 7052-1141-1
USNO-A2.0USNO-A2 0525-01813260
HIPHIP 22451

→ Sol·licitar més catàlegs i designacions de VizieR