Principal     Comenzar     To Survive in the Universe    
Inhabited Sky
    News@Sky     Astrofotografía     La Colección     Foro     Blog New!     FAQ     Prensa     Login  

HD 217312


Contenidos

Imágenes

Subir su imagen

DSS Images   Other Images


Artículos relacionados

Synchronization and circularization in early-type binaries on main sequence
We showed in a preceding paper based on an analysis of the observedrates of apsidal motion that synchronization in early-type eclipsingbinaries continues on the main sequence, and the observedsynchronization times, tsyn, agree with the Zahn's theory andare inconsistent with the shorter time-scale proposed by Tassoul. Itfollows from this that circularization in early-type binaries must alsoproceed in accordance with the Zahn's theory because the circularizationtimes, tcirc, in both theories are rather tightly related totsyn via relation tcirc ~?tsyn,where ? is the orbital-to-axial momentum ratio.To further investigate this problem, we compile a catalogue of 101eclipsing binaries with early-type main-sequence components(M1,2 > 1.6Msolar). We determine the ages, t,and circularization time-scales, tcirc, for all these systemsin terms of the two competing theories by comparing observational datawith modern models of stellar evolution of Claret and atmospheric modelsof Kurucz. We compute tcirc with the allowance for theevolutionary variations of the physical parameters of the componentsand, for the first time in such studies, also take into account thevariations of the orbital parameters (P, a, e) in the process ofcircularization subject to the conservation of the total angularmomentum.The results of these computations show that the mechanism of orbitalcircularization in early-type close binary systems (CBSs) suggested byTassoul is, like in the case of synchronization, inconsistent withobservational data. At the same time, the Zahn's mechanism, which isbased on the dissipation of the energy of dynamic tides in the upperlayers of the envelopes of CBSs components due to non-adiabaticity ofthese layers, agrees satisfactorily with observations.

Masses and luminosities of O- and B-type stars and red supergiants
Massive stars are of interest as progenitors of supernovae, i.e.neutron stars and black holes, which can be sources of gravitationalwaves. Recent population synthesis models can predict neutron star andgravitational wave observations but deal with a fixed supernova rate oran assumed initial mass function for the population of massive stars. Here we investigate those massive stars, which are supernovaprogenitors, i.e. with O- and early B-type stars, and also allsupergiants within 3 kpc. We restrict our sample to those massive starsdetected both in 2MASS and observed by Hipparcos, i.e. only those starswith parallax and precise photometry. To determine the luminositieswe calculated the extinctions from published multi-colour photometry,spectral types, luminosity class, all corrected for multiplicity andrecently revised Hipparcos distances. We use luminosities andtemperatures to estimate the masses and ages of these stars usingdifferent models from different authors. Having estimated theluminosities of all our stars within 3 kpc, in particular for all O- andearly B-type stars, we have determined the median and mean luminositiesfor all spectral types for luminosity classes I, III, and V. Ourluminosity values for supergiants deviate from earlier results: Previouswork generally overestimates distances and luminosities compared to ourdata, this is likely due to Hipparcos parallaxes (generally moreaccurate and larger than previous ground-based data) and the fact thatmany massive stars have recently been resolved into multiples of lowermasses and luminosities. From luminosities and effective temperatureswe derived masses and ages using mass tracks and isochrones fromdifferent authors. From masses and ages we estimated lifetimes andderived a lower limit for the supernova rate of ?20 events/Myraveraged over the next 10 Myr within 600 pc from the sun. These data arethen used to search for areas in the sky with higher likelihood for asupernova or gravitational wave event (like OB associations).

A systematic study of variability among OB-stars based on HIPPARCOS photometry
Context: Variability is a key factor for understanding the nature of themost massive stars, the OB stars. Such stars lie closest to the unstableupper limit of star formation. Aims: In terms of statistics, thedata from the HIPPARCOS satellite are unique because of time coverageand uniformity. They are ideal to study variability in this large,uniform sample of OB stars. Methods: We used statisticaltechniques to determine an independant threshold of variabilitycorresponding to our sample of OB stars, and then applied an automaticalgorithm to search for periods in the data of stars that are locatedabove this threshold. We separated the sample stars into 4 maincategories of variability: 3 intrinsic and 1 extrinsic. The intrinsiccategories are: OB main sequence stars (~2/3 of the sample), OBe stars(~10%) and OB Supergiant stars (~1/4).The extrinsic category refers toeclipsing binaries. Results: We classified about 30% of the wholesample as variable, although the fraction depends on magnitude level dueto instrumental limitations. OBe stars tend to be much more variable(≈80%) than the average sample star, while OBMS stars are belowaverage and OBSG stars are average. Types of variables include αCyg, β Cep, slowly pulsating stars and other types from the generalcatalog of variable stars. As for eclipsing binaries, there arerelatively more contact than detached systems among the OBMS and OBestars, and about equal numbers among OBSG stars.

A CO J = 1-0 survey of common optical/uv absorption sightlines
Context: Comparison of optical/uv absorption line data withhigh-resolution profiles of mm-wave CO emission provides complementaryinformation on the absorbing gas, as toward ? Oph. Over the pastthirty years a wealth of observations of CO and other molecules inoptical/uv absorption in diffuse clouds has accumulated for which nocomparable CO emission line data exist. Aims: To acquire mm-waveJ=1-0 CO emission line profiles toward a substantial sample ofcommonly-studied optical/uv absorption line targets and to compare withthe properties of the absorbing gas, especially the predicted emissionline strengths. Methods: Using the ARO 12 m telescope, weobserved mm-wavelength J=1-0 CO emission with spectral resolution R ?3× 106 and spatial resolution 1' toward a sample of 110lines of sight previously studied in optical/uv absorption lines of CO,H2, CH, etc. Results: Interstellar CO emission was detected along65 of the 110 lines of sight surveyed and there is a generalsuperabundance of CO emission given the distribution of galacticlatitudes in the survey sample. Much of the emission is optically thickor very intense and must emanate from dark clouds or warm dense gas nearHII regions. Conclusions: Judging from the statisticalsuperabundance of CO emission, seen also in the total line of sightreddening, the OB star optical/uv absorption line targets must bephysically associated with the large quantities of neutral gas whose COemission was detected, in which case they are probably influencing theabsorbing gas by heating and/or photoionizing it. This explains whyCO/H2 and 12CO/13CO ratios differ somewhat betweenuv and mm-wave absorption line studies. Because the lines of sight havebeen preselected to have AV ? 1 mag, relatively little ofthe associated material actually occults the targets, making itdifficult for CO emission line observations to isolate the foregroundgas contribution.Based on observations obtained with the ARO Kitt Peak 12 mtelescope.

CN column densities and excitation temperatures
We analyse abundances and rotational temperatures of the interstellar CNmolecule. We have calculated the column densities and excitationtemperatures of the molecule along 73 lines of sight basing on ouroriginal measurements of the B 2?+ -X2?+ (0,0) vibrational band recorded in highsignal-to-noise ratio spectra and also for 88 directions based onmeasurements already available in literature. We compare the columndensities obtained from different bands of CN molecule available toground-based instruments. The obtained excitation temperatures in theanalysed directions show always an excess over the cosmic microwavebackground radiation (CMBR) temperature.

Artificial Intelligence Approach to the Determination of Physical Properties of Eclipsing Binaries. I. The EBAI Project
Achieving maximum scientific results from the overwhelming volume ofastronomical data to be acquired over the next few decades demandsnovel, fully automatic methods of data analysis. Here we concentrate oneclipsing binary (EB) stars, a prime source of astrophysicalinformation, of which only some hundreds have been rigorously analyzed,but whose numbers will reach millions in a decade. We describe theartificial neural network (ANN) approach which is able to surmount thehuman bottleneck and permit EB-based scientific yield to keep pace withfuture data rates. The ANN, following training on a sample of 33,235model light curves, outputs a set of approximate model parameters[T2/T1, (R1+R2)/a,esinω, ecosω, and sini] for each input light curve data set.The obtained parameters can then be readily passed to sophisticatedmodeling engines. We also describe a novel method polyfit forpreprocessing observational light curves before inputting their data tothe ANN and present the results and analysis of testing the approach onsynthetic data and on real data including 50 binaries from the Catalogand Atlas of Eclipsing Binaries (CALEB) database and 2580 light curvesfrom OGLE survey data. The success rate, defined by less than a 10%error in the network output parameter values, is approximately 90% forthe OGLE sample and close to 100% for the CALEB sample-sufficient for areliable statistical analysis. The code is made available to the public.Our approach is applicable to EB light curves of all classes; this firstpaper in the eclipsing binaries via artificial intelligence (EBAI)series focuses on detached EBs, which is the class most challenging forthis approach.

Comparative statistics and origin of triple and quadruple stars
The statistics of catalogued quadruple stars consisting of two binaries(hierarchy 2 + 2), is studied in comparison with triple stars, withrespective sample sizes of 81 and 724. Seven representative quadruplesystems are discussed in greater detail. The main conclusions are asfollows. (i) Quadruple systems of ? Lyr type with similar massesand inner periods are common, in 42 per cent of the sample the outermass ratio is above 0.5 and the inner periods differ by less than 10times. (ii) The distributions of the inner periods in triple andquadruple stars are similar and bimodal. The inner mass ratios do notcorrelate with the inner periods. (iii) The statistics of outer periodsand mass ratios in triples and quadruples are different. The medianouter mass ratio in triples is 0.39 independently of the outer period,which has a smooth distribution. In contrast, the outer periods of 25per cent quadruples concentrate in the narrow range from 10 to 100yr,the outer mass ratios of these tight quadruples are above 0.6 and theirtwo inner periods are similar to each other. (iv) The outer and innermass ratios in triple and quadruple stars are not mutually correlated.In 13 per cent of quadruples both inner mass ratios are above 0.85(double twins). (v) The inner and outer orbital angular momenta andperiods in triple and quadruple systems with inner periods above 30dshow some correlation, the ratio of outer-to-inner periods is mostlycomprised between 5 and 104. In the systems with small periodratios the directions of the orbital spins are correlated, while in thesystems with large ratios they are not. The properties of multiple starsdo not correspond to the products of dynamical decay of small clusters,hence the N-body dynamics is not the dominant process of theirformation. On the other hand, rotationally driven (cascade)fragmentation possibly followed by migration of inner and/or outerorbits to shorter periods is a promising scenario to explain the originof triple and quadruple stars.

Mass-luminosity relation of intermediate-mass stars
The mass-luminosity relation (MLR) for intermediate-mass stars is basedon data on detached double-lined eclipsing binaries. However, there is anotable difference between the parameters of B0V-G0V components ofeclipsing binaries and those of single stars. Single early-type starsare rapid rotators, whereas tidal forces produce synchronous rotation inclose binaries and all such pairs are synchronized, so components ofclose binaries rotate more slowly. As is well known, stellar rotationchanges stellar evolution and the global parameters of a star.In this work we collect data on fundamental parameters of stars withmasses m > 1.5msolar. They are components of binaries withP > 15 d and consequently are not synchronized with the orbitalperiods and presumably are rapid rotators. These stars are believed toevolve similarly with single stars. Modern data on masses, absolute andbolometric luminosities, radii and temperatures of detachedmain-sequence double-lined eclipsing binary components (i.e. presumablyslow rotators) are also collected.Mass-luminosity, mass-temperature and mass-radius relations of close andwide binaries are presented, as well as their Hertzsprung-Russelldiagram. For the mass range 4.5 < m/msolar < 5.5 (lateB stars) it was found that rapid rotators exhibit slightly higherluminosities and larger radii than predicted by the standard relations,and their main sequence is shifted to the right-hand side with respectto that of the close binary components. The resulting relations forrapidly and slowly rotating A-F and early B stars are not statisticallydifferent.As our estimations show, for the given mass range the effect on theinitial mass function (IMF) is marginal, but there is no way to estimatethe degree to which the effect may be important for higher masses.Available observational data for m > 12msolar are too poorto make definite conclusions. Knowledge of the MLR should come fromdynamical mass determinations of visual binaries combined with spatiallyresolved precise photometry. Then the IMF should be revised for thatmass range.

A new catalogue of eclipsing binary stars with eccentric orbits
A new catalogue of eclipsing binary stars with eccentric orbits ispresented. The catalogue lists the physical parameters (includingapsidal motion parameters) of 124 eclipsing binaries with eccentricorbits. In addition, the catalogue also contains a list of 150 candidatesystems, about which not much is known at present.Full version of the catalogue is available online (see the SupplementaryMaterial section at the end of this paper) and in electronic form at theCDS via http://cdsarc.u-strasbg.fr (130.79.128.5) or viahttp://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/MNRAS/(vol)/ (page)E-mail: ibulut@comu.edu.tr

Mass-luminosity relation for massive stars
A catalog of massive (⩾10 M ȯ) stars in binary andmultiple systems with well-known masses and luminosities has beencompiled. The catalog is analyzed using a theoretical mass-luminosityrelation. This relation allows both normal main-sequence stars and starswith peculiarities: with clear manifestations of mass transfer, massaccretion, and axial rotation, to be identified. Least-squares fittingof the observational data in the range of stellar masses 10Mȯ ⩽ M ≲ 50 M ȯ yields therelation L ˜ M 2.76.

Effect of tidal evolution in determining the ages of eclipsing-variable early main sequence close binary systems
New Claret evolutionary model-tracks, constructed for the first time forstudying close binary systems (CBS) including tidal evolution constants,are used to determine the age of 112 eclipsing-variable stars in theSvechnikov-Perevozkina catalog by the method of isochrones. There issome interest in comparing the calculated ages with previous estimatesobtained for these same close binary systems using evolutionarymodeltracks for individual stars taking their mass loss into account. Acorrelation of the ages of the principal and secondary components isnoted, which is most marked for massive close binaries with principalcomponents having masses M1 ? 3 M?. Arejuvenating effect is found to occur for the systems studied here ascalculated on the new tracks; it is most distinct for low-mass closebinaries with a total mass M1 + M2 ? 3.5M? and is predicted theoretically in terms of magneticbraking. The calculated broadband grid of isochrones, from zero-agemain-sequence (ZAMS) to the age of the galaxy, can be used forestimating the ages of close binaries from other catalogs. Ages aregiven for the 112 eclipsing-variable close binaries with detachedcomponents lying within the main sequence.

Evolution of interacting binaries with a B type primary at birth
We revisited the analytical expression for the mass ratio distributionfor non-evolved binaries with a B type primary. Selection effectsgoverning the observations were taken into account in order to comparetheory with observations. Theory was optimized so as to fit best withthe observed q-distribution of SB1s and SB2s. The accuracy of thistheoretical mass ratio distribution function is severely hindered by theuncertainties on the observations. We present a library of evolutionarycomputations for binaries with a B type primary at birth. Some liberalcomputations including loss of mass and angular momentum during binaryevolution are added to an extensive grid of conservative calculations.Our computations are compared statistically to the observeddistributions of orbital periods and mass ratios of Algols. ConservativeRoche Lobe Over Flow (RLOF) reproduces the observed distribution oforbital periods but fails to explain the observed mass ratios in therange q in [0.4-1]. In order to obtain a better fit the binaries have tolose a significant amount of matter, without losing much angularmomentum.

A catalogue of eclipsing variables
A new catalogue of 6330 eclipsing variable stars is presented. Thecatalogue was developed from the General Catalogue of Variable Stars(GCVS) and its textual remarks by including recently publishedinformation about classification of 843 systems and making correspondingcorrections of GCVS data. The catalogue1 represents thelargest list of eclipsing binaries classified from observations.

Cloud Structure and Physical Conditions in Star-forming Regions from Optical Observations. II. Analysis
To complement the optical absorption line survey of diffuse moleculargas in Paper I, we obtained and analyzed far-ultraviolet H2and CO data on lines of sight toward stars in Cep OB2 and Cep OB3.Possible correlations between column densities of different species forindividual velocity components, not total columns along a line of sightas in the past, were examined and were interpreted in terms of cloudstructure. The analysis reveals that there are two kinds of CH indiffuse molecular gas: CN-like CH and CH+-like CH. Evidenceis provided that CO is also associated with CN in diffuse molecularclouds. Different species are distributed according to gas density inthe diffuse molecular gas. Both calcium and potassium may be depletedonto grains in high-density gas, but with different dependencies onlocal gas density. Gas densities for components where CN was detectedwere inferred from a chemical model. Analysis of cloud structureindicates that our data are generally consistent with the large-scalestructure suggested by maps of CO millimeter-wave emission. On smallscales, the gas density is seen to vary by factors greater than 5.0 overscales of ~10,000 AU. The relationships between column densities of COand CH with that of H2 along a line of sight show similarslopes for the gas toward Cep OB2 and Cep OB3, but the CO/H2and CH/H2 ratios tend to differ, which we ascribe tovariation in average density along the line of sight.

New Estimates of the Solar-Neighborhood Massive Star Birthrate and the Galactic Supernova Rate
The birthrate of stars of masses >=10 Msolar is estimatedfrom a sample of just over 400 O3-B2 dwarfs within 1.5 kpc of the Sunand the result extrapolated to estimate the Galactic supernova ratecontributed by such stars. The solar-neighborhood Galactic-plane massivestar birthrate is estimated at ~176 stars kpc-3Myr-1. On the basis of a model in which the Galactic stellardensity distribution comprises a ``disk+central hole'' like that of thedust infrared emission (as proposed by Drimmel and Spergel), theGalactic supernova rate is estimated at probably not less than ~1 normore than ~2 per century and the number of O3-B2 dwarfs within the solarcircle at ~200,000.

Close binary stars in ob-association regions i. preliminary investigation
We performed a sample of O- and B-eclipsing binary stars inOB-association regions and obtained the preliminary list of 147 binariesin 45 OB-association regions. We tried to elucidate the question whether(or not) the close binaries belong to corresponding OB-associations,from the commonness of their proper motions, radial velocities anddistances. Based on the completeness of the data,the binaries aredevided into three groups and the scheme for calculation of degree ofbelonging of stars to OB-associations is developed. Necessary data arenot available for nine systems and they are given in a specific table.For 12 cases, the binaries project onto the regions of two associations.We show that 33 (22.3%) close binary stars are members, 65 (43.9%) areprobable members and 39 (26.4%) are less probable members of theOB-associations. We find that 11 binaries belong to the Galaxybackground. The comparison of the distributions of orbital periods forthe binaries in OB-associations and for O-, B-binaries of the Galaxybackground shows their considerable differences in the vicinity of thetwo-day period.

An Apparent Descriptive Method for Judging the Synchronization of Rotation of Binary Stars
The problem of the synchronous rotation of binary stars is judged byusing a synchronous parameter Q introduced in an apparent descriptivemethod. The synchronous parameter Q is defined as the ratio of therotational period to the orbital period. The author suggests severalapparent phenomenal descriptive methods for judging the synchronizationof rotation of binary stars. The first method is applicable when theorbital inclination is well-known. The synchronous parameter is definedby using the orbital inclination i and the observable rotationalvelocity (V1,2 sin i)M. The method is mainly suitable for eclipsingbinary stars. Several others are suggested for the cases when theorbital inclination i is unknown. The synchronous parameters are definedby using a1,2 sin i,m1,2 sin3 i, the mass function f (m) andsemi-amplitudes of the velocity curve, K1,2 given in catalogue ofparameters of spectroscopic binary systems and (V1,2 sin i)M. Thesemethods are suitable for spectroscopic binary stars including those thatshow eclipses and visual binary stars concurrently. The synchronousparameters for fifty-five components in thirty binary systems arecalculated by using several methods. The numerical results are listed inTables 1 and 2. The statistical results are listed in Table 3. Inaddition, several apparent descriptive methods are discussed.

SB9: The ninth catalogue of spectroscopic binary orbits
The Ninth Catalogue of Spectroscopic Binary Orbits(http://sb9.astro.ulb.ac.be) continues the series of compilations ofspectroscopic orbits carried out over the past 35 years by Batten andcollaborators. As of 2004 May 1st, the new Catalogue holds orbits for2386 systems. Some essential differences between this catalogue and itspredecessors are outlined and three straightforward applications arepresented: (1) completeness assessment: period distribution of SB1s andSB2s; (2) shortest periods across the H-R diagram; (3)period-eccentricity relation.

Up-to-Date Linear Elements of Eclipsing Binaries
About 1800 O-C diagrams of eclipsing binaries were analyzed and up-todate linear elements were computed. The regularly updated ephemerides(as a continuation of SAC) are available only in electronic form at theInternet address: http://www.as.ap.krakow.pl/ephem/.

Cloud Structure and Physical Conditions in Star-forming Regions from Optical Observations. I. Data and Component Structure
We present high-resolution optical spectra (at ~0.6-1.8 kms-1) of interstellar CN, CH, CH+, Ca I, K I, andCa II absorption toward 29 lines of sight in three star-forming regions,ρ Oph, Cep OB2, and Cep OB3. The observations and data reduction aredescribed. The agreement between earlier measurements of the totalequivalent widths and our results is quite good. However, our higherresolution spectra reveal complex structure and closely blendedcomponents in most lines of sight. The velocity component structure ofeach species is obtained by analyzing the spectra of the six species fora given sight line together. The tabulated column densities and Dopplerparameters of individual components are determined by using the methodof profile fitting. Total column densities along lines of sight arecomputed by summing results from profile fitting for individualcomponents and are compared with column densities from the apparentoptical depth method. A more detailed analysis of these data and theirimplications will be presented in a companion paper.

Apsidal Motion in Binaries: Rotation of the Components
A sample of 51 separated binary systems with measured apsidal periodsand rotational velocities of the components is examined. The ranges ofthe angles of inclination of the equatorial planes of the components tothe orbital plane are estimated for these systems. The observed apsidalvelocities can be explained by assuming that the axes of rotation of thestars are nonorthogonal to the orbital plane in roughly 47% of thesystems (24 of the 51) and the rotation of the components is notsynchronized with the orbital motion in roughly 59% of the systems (30of 51). Nonorthogonality and nonsynchrony are defined as deviations from90° and a synchronized angular velocity, respectively, at levels of1 or more.

Catalog of Galactic OB Stars
An all-sky catalog of Galactic OB stars has been created by extendingthe Case-Hamburg Galactic plane luminous-stars surveys to include 5500additional objects drawn from the literature. This work brings the totalnumber of known or reasonably suspected OB stars to over 16,000.Companion databases of UBVβ photometry and MK classifications forthese objects include nearly 30,000 and 20,000 entries, respectively.

Apsidal Motion in Detached Binary Stars: Comparison of Theory and Observations
A list of 62 detached binaries having reliable data on the rotation ofthe line of apsides is considered. Theoretical estimates of the rate ofapsidal motion are obtained. These estimates are compared withobservational data. It is shown that cases in which the theoreticalestimate exceeds the observed value are several times more frequent thancases in which the theoretical value is lower than the observed one.This discrepancy increases when systems with more reliable observationaldata are considered.

The post-Newtonian effects due to rotation of stars on the variation of orbital elements of the component in binary system
The author examined continuously the post-Newtonian effects due torotation of stars on the variation of the orbital elements for thecomponent in binary system in PPN formalism. The secular and periodicperturbation effects are both given. The results show that there existonly the periodic variations in semi-major axis and eccentricity, andexist the periodic and secular variations in longitude of periastron andmean anomaly of epoch. In addition, the author applied the obtainedresults to calculate the post-Newtonian effects of rotation to sixbinary stars (EK Cep?GT Cep?NY Cep?V448 Cyg?V1143 Cyg?V451 Oph)on thevariation of the Orbital elements of components and discussed. Thenumerical results are given in Tablel-3. It shows that thepost-Newtonian effect caused by the two rapid rotating massivecomponents is not negligible.

Catalogue of Apparent Diameters and Absolute Radii of Stars (CADARS) - Third edition - Comments and statistics
The Catalogue, available at the Centre de Données Stellaires deStrasbourg, consists of 13 573 records concerning the results obtainedfrom different methods for 7778 stars, reported in the literature. Thefollowing data are listed for each star: identifications, apparentmagnitude, spectral type, apparent diameter in arcsec, absolute radiusin solar units, method of determination, reference, remarks. Commentsand statistics obtained from CADARS are given. The Catalogue isavailable in electronic form at the CDS via anonymous ftp tocdsarc.u-strasbg.fr (130.79.128.5) or viahttp://cdsweb.u-strasbg.fr/cgi-bin/qcar?J/A+A/367/521

Stars with ISM Polarization Observed with HPOL
Polarization data are given for stars whose polarizations are mostlyinterstellar which were observed for various programs with theUniversity of Wisconsin spectropolarimeter (HPOL) during 1989-1994.

Apsidal Motion in Double Stars. I. Catalog
A catalog of 128 double stars with measured periods of apsidal motion iscompiled. Besides the apsidal periods, the orbital elements of binariesand physical parameters of components (masses, radii, effectivetemperatures, surface gravities) are given. The agreement of the apsidalperiods found by various authors is discussed.

Determination of empirical mass-luminosity and mass-radius relations for main-sequence stars that are the components of eclipsing binary systems
Based on a new catalog of photometric, geometrical, and absoluteelements for 112 eclipsing binary systems with both components on themain sequence and with known photometric and spectroscopic orbitalelements, we redetermined the mass-luminosity and mass-radius relations:M_bol = 4.46 - 9.52 lg M (lg M > -0.4), M_bol = 6.58 - 5.00 lg M (lgM <= -0.4), lg R = 0.096 + 0.652 lg M (lg M > 0.14), lg R = 0.049+ 0.993 lg M (lg M <= 0.14). For most systems, the masses and radiiof the components are determined with an accuracy of 2-3% and 2-4%,respectively. We estimated the parameters of these relations by theleast-squares method using the procedure for correcting the estimatesthus obtained for noise in the argument.

Orbital circularization in detached binaries with early-type primaries
Extending our previous study, the present paper reports on thediscussion of the orbital circularization in 37 detached binaries withearly-type primaries. From comparison of the theoretical predictionswith the orbital eccentricities of our binary systems, we find thatZahn's circularization theories are substantially consistent with theobserved data for overwhelming majority of our samples. However, we alsonote that three binaries of whom both components are asynchronizedrotators possess circular orbits. How to understand the circularism ofthe three systems remains a problem not only to Zahn's theories, but toall other present circularization mechanisms.We think that studies onthe circularization of pre-main-sequence binary systems could providesome clues for the problem.

UBV beta Database for Case-Hamburg Northern and Southern Luminous Stars
A database of photoelectric UBV beta photometry for stars listed in theCase-Hamburg northern and southern Milky Way luminous stars surveys hasbeen compiled from the original research literature. Consisting of over16,000 observations of some 7300 stars from over 500 sources, thisdatabase constitutes the most complete compilation of such photometryavailable for intrinsically luminous stars around the Galactic plane.Over 5000 stars listed in the Case-Hamburg surveys still lackfundamental photometric data.

Enviar un nuevo artículo


Enlaces relacionados

  • - No se han encontrado enlaces -
En viar un nuevo enlace


Miembro de los siguientes grupos:


Datos observacionales y astrométricos

Constelación:Cefeo
Ascensión Recta:22h58m39.79s
Declinación:+63°04'37.8"
Magnitud Aparente:7.432
Distancia:10000000 parsecs
Movimiento Propio en Ascensión Recta:-4
Movimiento Propio en Declinación:-0.2
B-T magnitude:7.823
V-T magnitude:7.465

Catálogos y designaciones:
Nombres Propios   (Edit)
HD 1989HD 217312
TYCHO-2 2000TYC 4282-468-1
USNO-A2.0USNO-A2 1500-09415197
HIPHIP 113461

→ Solicitar más catálogos y designaciones a VizieR