תוכן
תמונות
הוסף תמונה שלך
DSS Images Other Images
מאמרים קשורים
Unconstrained Astrometric Orbits for Hipparcos Stars with Stochastic Solutions A considerable number of astrometric binaries whose positions on the skydo not obey the standard model of mean position, parallax, and linearproper motion were observed by the Hipparcos satellite. Some of themremain undiscovered, and their observational data have not been properlyprocessed with the more adequate astrometric model that includesnonlinear orbital motion. We develop an automated algorithm, based on``genetic optimization,'' to solve the orbital fitting problem in themost difficult setup, when no prior information about the orbitalelements is available (from, e.g., spectroscopic data or radial velocitymonitoring). We also offer a technique to accurately compute theprobability that an orbital fit is bogus, that is, that an orbitalsolution is obtained for a single star, and to estimate the probabilitydistributions for the fitting orbital parameters. We test this method onHipparcos stars with known orbital solutions in the catalog and furtherapply it to 1561 stars with stochastic solutions, which may beunresolved binaries. At a confidence level of 99%, orbital fits areobtained for 65 stars, most of which have not been known as binary. Itis found that reliable astrometric fits can be obtained even if theperiod is somewhat longer than the time span of the Hipparcos mission,that is, if the orbit is not closed. A few of the new probable binarieswith A-type primaries with periods 444-2015 days are chemically peculiarstars, including Ap and λ Bootis types. The anomalous spectra ofthese stars are explained by admixtures of light from the unresolved,sufficiently bright and massive companions. We estimate the apparentorbits of four stars that have been identified as members of the ~300Myr old Ursa Major kinematic group. Another four new nearby binaries mayinclude low-mass M-type or brown dwarf companions. Follow-upspectroscopic observations in conjunction with more accurate inclinationestimates will lead to better estimates of the secondary mass. Similarastrometric models and algorithms can be used for binary stars andplanet hosts observed by SIM and Gaia.
| Can Life Develop in the Expanded Habitable Zones around Red Giant Stars? We present some new ideas about the possibility of life developingaround subgiant and red giant stars. Our study concerns the temporalevolution of the habitable zone. The distance between the star and thehabitable zone, as well as its width, increases with time as aconsequence of stellar evolution. The habitable zone moves outward afterthe star leaves the main sequence, sweeping a wider range of distancesfrom the star until the star reaches the tip of the asymptotic giantbranch. Currently there is no clear evidence as to when life actuallyformed on the Earth, but recent isotopic data suggest life existed atleast as early as 7×108 yr after the Earth was formed.Thus, if life could form and evolve over time intervals from5×108 to 109 yr, then there could behabitable planets with life around red giant stars. For a 1Msolar star at the first stages of its post-main-sequenceevolution, the temporal transit of the habitable zone is estimated to beseveral times 109 yr at 2 AU and around 108 yr at9 AU. Under these circumstances life could develop at distances in therange 2-9 AU in the environment of subgiant or giant stars, and in thefar distant future in the environment of our own solar system. After astar completes its first ascent along the red giant branch and the Heflash takes place, there is an additional stable period of quiescent Hecore burning during which there is another opportunity for life todevelop. For a 1 Msolar star there is an additional109 yr with a stable habitable zone in the region from 7 to22 AU. Space astronomy missions, such as proposed for the TerrestrialPlanet Finder (TPF) and Darwin, that focus on searches for signatures oflife on extrasolar planets, should also consider the environments ofsubgiants and red giant stars as potentially interesting sites forunderstanding the development of life. We performed a preliminaryevaluation of the difficulty of interferometric observations of planetsaround red giant stars compared to a main-sequence star environment. Weshow that pathfinder missions for TPF and Darwin, such as Eclipse andFKSI, have sufficient angular resolution and sensitivity to search forhabitable planets around some of the closest evolved stars of thesubgiant and red giant class.
| Stellar Chemical Signatures and Hierarchical Galaxy Formation To compare the chemistries of stars in the Milky Way dwarf spheroidal(dSph) satellite galaxies with stars in the Galaxy, we have compiled alarge sample of Galactic stellar abundances from the literature. Whenkinematic information is available, we have assigned the stars tostandard Galactic components through Bayesian classification based onGaussian velocity ellipsoids. As found in previous studies, the[α/Fe] ratios of most stars in the dSph galaxies are generallylower than similar metallicity Galactic stars in this extended sample.Our kinematically selected stars confirm this for the Galactic halo,thin-disk, and thick-disk components. There is marginal overlap in thelow [α/Fe] ratios between dSph stars and Galactic halo stars onextreme retrograde orbits (V<-420 km s-1), but this is notsupported by other element ratios. Other element ratios compared in thispaper include r- and s-process abundances, where we find a significantoffset in the [Y/Fe] ratios, which results in a large overabundance in[Ba/Y] in most dSph stars compared with Galactic stars. Thus, thechemical signatures of most of the dSph stars are distinct from thestars in each of the kinematic components of the Galaxy. This resultrules out continuous merging of low-mass galaxies similar to these dSphsatellites during the formation of the Galaxy. However, we do not ruleout very early merging of low-mass dwarf galaxies, since up to one-halfof the most metal-poor stars ([Fe/H]<=-1.8) have chemistries that arein fair agreement with Galactic halo stars. We also do not rule outmerging with higher mass galaxies, although we note that the LMC and theremnants of the Sgr dwarf galaxy are also chemically distinct from themajority of the Galactic halo stars. Formation of the Galaxy's thickdisk by heating of an old thin disk during a merger is also not ruledout; however, the Galaxy's thick disk itself cannot be comprised of theremnants from a low-mass (dSph) dwarf galaxy, nor of a high-mass dwarfgalaxy like the LMC or Sgr, because of differences in chemistry.The new and independent environments offered by the dSph galaxies alsoallow us to examine fundamental assumptions related to thenucleosynthesis of the elements. The metal-poor stars ([Fe/H]<=-1.8)in the dSph galaxies appear to have lower [Ca/Fe] and [Ti/Fe] than[Mg/Fe] ratios, unlike similar metallicity stars in the Galaxy.Predictions from the α-process (α-rich freeze-out) would beconsistent with this result if there have been a lack of hypernovae indSph galaxies. The α-process could also be responsible for thevery low Y abundances in the metal-poor stars in dSph's; since [La/Eu](and possibly [Ba/Eu]) are consistent with pure r-process results, thelow [Y/Eu] suggests a separate r-process site for this light(first-peak) r-process element. We also discuss SNe II rates and yieldsas other alternatives, however. In stars with higher metallicities([Fe/H]>=-1.8), contributions from the s-process are expected; [(Y,La, and Ba)/Eu] all rise as expected, and yet [Ba/Y] is still muchhigher in the dSph stars than similar metallicity Galactic stars. Thisresult is consistent with s-process contributions from lower metallicityAGB stars in dSph galaxies, and is in good agreement with the slowerchemical evolution expected in the low-mass dSph galaxies relative tothe Galaxy, such that the build-up of metals occurs over much longertimescales. Future investigations of nucleosynthetic constraints (aswell as galaxy formation and evolution) will require an examination ofmany stars within individual dwarf galaxies.Finally, the Na-Ni trend reported in 1997 by Nissen & Schuster isconfirmed in Galactic halo stars, but we discuss this in terms of thegeneral nucleosynthesis of neutron-rich elements. We do not confirm thatthe Na-Ni trend is related to the accretion of dSph galaxies in theGalactic halo.
| Subgiants as probes of galactic chemical evolution Chemical abundances for 23 candidate subgiant stars have been derivedwith the aim at exploring their usefulness for studies of galacticchemical evolution. High-resolution spectra from ESO CAT-CES andNOT-SOFIN covered 16 different spectral regions in the visible part ofthe spectrum. Some 200 different atomic and molecular spectral lineshave been used for abundance analysis of 30 elemental species. Thewings of strong, pressure-broadened metal lines were used fordetermination of stellar surface gravities, which have been comparedwith gravities derived from HIPPARCOS parallaxes and isochronic masses.Stellar space velocities have been derived from HIPPARCOS and Simbaddata, and ages and masses were derived with recent isochrones. Only 12of the stars turned out to be subgiants, i.e. on the ``horizontal'' partof the evolutionary track between the dwarf- and the giant stages. Theabundances derived for the subgiants correspond closely to those ofdwarf stars. With the possible exceptions of lithium and carbon we findthat subgiant stars show no ``chemical'' traces of post-main-sequenceevolution and that they are therefore very useful targets for studies ofgalactic chemical evolution.Based on observations made at ESO, La Silla.Based on observations made at NOT, La Palma.Tables 1 and 2 are only available in electronic form athttp://www.edpsciences.org
| Precise radial velocity measurements of G and K giants. Multiple systems and variability trend along the Red Giant Branch We present the results of our radial velocity (RV) measurements of G andK giants, concentrating on the presence of multiple systems in oursample. Eighty-three giants have been observed for 2.5 years with thefiber-fed echelle spectrograph FEROS at the 1.52 m ESO telescope in LaSilla, Chile. Seventy-seven stars (93%) of the targets have beenanalyzed for RV variability using simultaneous Th-Ar calibration and across-correlation technique. We estimate the long-term precision of ourmeasurement as better than 25 m s-1. Projected rotationalvelocities have been measured for most stars of the sample. Within ourtime-base only 21 stars (or 27%) show variability below 2\sigma, whilethe others show RV variability with amplitudes up to several kms-1. The large amplitude (several km s-1) andshape (high eccentricity) of the RV variations for 11 of the programstars are consistent with stellar companions, and possibly brown dwarfcompanions for two of the program stars. In those systems for which afull orbit could be derived, the companions have minimum masses from0.6 M\sun down to 0.1 M\sun. To thesemultiple systems we add the two candidates of giant planets alreadydiscovered in the sample. This analysis shows that multiple systemscontribute substantially to the long-term RV variability of giant stars,with about 20% of the sample being composed of multiple systems despitescreening our sample for known binary stars. After removing binaries,the range of RV variability in the whole sample clearly decreases, butthe remaining stars retain a statistical trend of RV variability withluminosity: luminous cool giants with B-V≥1.2 show RV variationswith \sigma_{/lineRV} > 60 m s-1, while giants with B-V< 1.2 including those in the clump region exhibit less variability orthey are constant within our accuracy. The same trend is observed withrespect to absolute visual magnitudes: brighter stars show a largerdegree of variability and, when plotted in the RV variability vs.magnitude diagram a trend of increasing RV scatter with luminosity isseen. The amplitude of RV variability does not increase dramatically, aspredicted, for instance, by simple scaling laws. At least two luminousand cooler stars of the sample show a correlation between RV andchromospheric activity and bisector asymmetry, indicating that in thesetwo objects RV variability is likely induced by the presence of(chromospheric) surface structures.Based on observations collected at the 1.52 m-ESO telescope at the LaSilla Observatory from Oct 1999 to Feb. 2002 under ESO programs and theESO-Observatório Nacional, Brazil, agreement and in part onobservations collected on the Alfred Jensch 2 m telescope of theThüringer Landessternwarte Tautenburg.
| Improved Astrometry and Photometry for the Luyten Catalog. II. Faint Stars and the Revised Catalog We complete construction of a catalog containing improved astrometry andnew optical/infrared photometry for the vast majority of NLTT starslying in the overlap of regions covered by POSS I and by the secondincremental Two Micron All Sky Survey (2MASS) release, approximately 44%of the sky. The epoch 2000 positions are typically accurate to 130 mas,the proper motions to 5.5 mas yr-1, and the V-J colors to0.25 mag. Relative proper motions of binary components are measured to 3mas yr-1. The false-identification rate is ~1% for11<~V<~18 and substantially less at brighter magnitudes. Theseimprovements permit the construction of a reduced proper-motion diagramthat, for the first time, allows one to classify NLTT stars intomain-sequence (MS) stars, subdwarfs (SDs), and white dwarfs (WDs). We inturn use this diagram to analyze the properties of both our catalog andthe NLTT catalog on which it is based. In sharp contrast to popularbelief, we find that NLTT incompleteness in the plane is almostcompletely concentrated in MS stars, and that SDs and WDs are detectedalmost uniformly over the sky δ>-33deg. Our catalogwill therefore provide a powerful tool to probe these populationsstatistically, as well as to reliably identify individual SDs and WDs.
| Statistical cataloging of archival data for luminosity class IV-V stars. II. The epoch 2001 [Fe/H] catalog This paper describes the derivation of an updated statistical catalog ofmetallicities. The stars for which those metallicities apply are ofspectral types F, G, and K, and are on or near the main sequence. Theinput data for the catalog are values of [Fe/H] published before 2002February and derived from lines of weak and moderate strength. Theanalyses used to derive the data have been based on one-dimensional LTEmodel atmospheres. Initial adjustments which are applied to the datainclude corrections to a uniform temperature scale which is given in acompanion paper (see Taylor \cite{t02}). After correction, the data aresubjected to a statistical analysis. For each of 941 stars considered,the results of that analysis include a mean value of [Fe/H], an rmserror, an associated number of degrees of freedom, and one or moreidentification numbers for source papers. The catalog of these resultssupersedes an earlier version given by Taylor (\cite{t94b}).Catalog is only available in electronic form at the CDS via anonymousftp cdsarc.u-strasbg.fr (130.79.128.5) or viahttp://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/398/731
| Statistical cataloging of archival data for luminosity class IV-V stars. I. The epoch 2001 temperature catalog This paper is one of a pair in which temperatures and metallicitycatalogs for class IV-V stars are considered. The temperature catalogdescribed here is derived from a calibration based on stellar angulardiameters. If published calibrations of this kind are compared by usingcolor-index transformations, temperature-dependent differences among thecalibrations are commonly found. However, such differences are minimizedif attention is restricted to calibrations based on Johnson V-K. Acalibration of this sort from Di Benedetto (\cite{dib98}) is thereforetested and adopted. That calibration is then applied to spectroscopicand photometric data, with the latter predominating. Cousins R-Iphotometry receives special attention because of its high precision andlow metallicity sensitivity. Testing of temperatures derived from thecalibration suggests that their accuracy and precision are satisfactory,though further testing will be warranted as new results appear. Thesetemperatures appear in the catalog as values of theta equiv5040/T(effective). Most of these entries are accompanied by measured orderived values of Cousins R-I. Entries are given for 951 stars.Catalog is only available in electronic form at the CDS via anonymousftp to cdsarc.u-strasbg.fr (130.79.128.5) or viahttp://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/398/721
| Revised Coordinates and Proper Motions of the Stars in the Luyten Half-Second Catalog We present refined coordinates and proper-motion data for the highproper-motion (HPM) stars in the Luyten Half-Second (LHS) catalog. Thepositional uncertainty in the original Luyten catalog is typicallygreater than 10" and is often greater than 30". We have used the digitalscans of the POSS I and POSS II plates to derive more accurate positionsand proper motions of the objects. Out of the 4470 candidates in the LHScatalog, 4323 objects were manually reidentified in the POSS I and POSSII scans. A small fraction of the stars were not found because of thelack of finder charts and digitized POSS II scans. The uncertainties inthe revised positions are typically ~2" but can be as high as ~8" in afew cases, which is a large improvement over the original data.Cross-correlation with the Tycho-2 and Hipparcos catalogs yielded 819candidates (with mR<~12). For these brighter sources, theposition and proper-motion data were replaced with the more accurateTycho-2/Hipparcos data. In total, we have revised proper-motionmeasurements and coordinates for 4040 stars and revised coordinates for4330 stars. The electronic version of the paper5 contains the updated information on all 4470stars in the LHS catalog.
| HIPPARCOS age-metallicity relation of the solar neighbourhood disc stars We derive age-metallicity relations (AMRs) and orbital parameters forthe 1658 solar neighbourhood stars to which accurate distances aremeasured by the HIPPARCOS satellite. The sample stars comprise 1382 thindisc stars, 229 thick disc stars, and 47 halo stars according to theirorbital parameters. We find a considerable scatter for thin disc AMRalong the one-zone Galactic chemical evolution (GCE) model. Orbits andmetallicities of thin disc stars show now clear relation each other. Thescatter along the AMR exists even if the stars with the same orbits areselected. We examine simple extension of one-zone GCE models whichaccount for inhomogeneity in the effective yield and inhomogeneous starformation rate in the Galaxy. Both extensions of the one-zone GCE modelcannot account for the scatter in age - [Fe/H] - [Ca/Fe] relationsimultaneously. We conclude, therefore, that the scatter along the thindisc AMR is an essential feature in the formation and evolution of theGalaxy. The AMR for thick disc stars shows that the star formationterminated 8 Gyr ago in the thick disc. As already reported by Grattonet al. (\cite{Gratton_et.al.2000}) and Prochaska et al.(\cite{Prochaska_et.al.2000}), thick disc stars are more Ca-rich thanthin disc stars with the same [Fe/H]. We find that thick disc stars showa vertical abundance gradient. These three facts, the AMR, verticalgradient, and [Ca/Fe]-[Fe/H] relation, support monolithic collapseand/or accretion of satellite dwarf galaxies as likely thick discformation scenarios. Tables 2 and 3 are only available in electronicform at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5)or via http:/ /cdsweb.u-strasbg.fr/ cgi-bin/qcat?J/ A+A/394/927
| Catalogue of Apparent Diameters and Absolute Radii of Stars (CADARS) - Third edition - Comments and statistics The Catalogue, available at the Centre de Données Stellaires deStrasbourg, consists of 13 573 records concerning the results obtainedfrom different methods for 7778 stars, reported in the literature. Thefollowing data are listed for each star: identifications, apparentmagnitude, spectral type, apparent diameter in arcsec, absolute radiusin solar units, method of determination, reference, remarks. Commentsand statistics obtained from CADARS are given. The Catalogue isavailable in electronic form at the CDS via anonymous ftp tocdsarc.u-strasbg.fr (130.79.128.5) or viahttp://cdsweb.u-strasbg.fr/cgi-bin/qcar?J/A+A/367/521
| The Disk of β Pictoris in the Light of Polarimetric Data We model the linear polarization of the radiation of β Picscattered by dust particles in the circumstellar disk. The observedspatial distribution and the wavelength dependence of the polarizationtogether with the colors of the β Pic disk require that particlesin a wide size range be present in the disk, with the grains smallerthan a few microns in size being somewhat depleted but still ofimportance for the polarization and colors. The inferred sizedistribution is consistent with the production and loss mechanisms: thesources-presumably collisions and evaporation of largebodies-continuously produce dust with a power-law size distribution withthe exponent ~3.5 over a broad range of sizes, but the particles smallerthan a few microns are blown away by the radiation pressure, whichshortens the time they spend in the disk and decreases their numberdensities. Compact (or slightly porous) silicates are found to givebetter agreement with the observations, although other materials arestill not ruled out and a high fluffiness of the large particles ispossible. The observed asymmetry in the polarization of two wings can beexplained if more small grains (by 20%-30%) are present on the northeastside of the disk. We show that such an asymmetry in the sizedistributions in two wings might be caused by an influence of theinterstellar medium; a required amount of small grains could be producedby destructive collisions of interstellar grains with the circumstellardust particles.
| Abundances of light elements in metal-poor stars. III. Data analysis and results We present the results of the analysis of an extensive set of new andliterature high quality data concerning Fe, C, N, O, Na, and Mg. Thisanalysis exploited the T_eff scale determined in Gratton et al. (1996a),and the non-LTE abundance corrections computed in Gratton et al.(1999a). Results obtained with various abundance indices are discussedand compared. Detailed comparison with models of galactic chemicalevolution will be presented in future papers of this series. Our non-LTEanalysis yields the same O abundances from both permitted and forbiddenlines for stars with T_eff >4600 K, in agreement with King (1993),but not with other studies using a lower T_eff -scale for subdwarfs.However, we obtain slightly smaller O abundances for the most luminousmetal-poor field stars than for fainter stars of similar metallicities,an effect attributed to inadequacies of the adopted model atmospheres(Kurucz 1992, with overshooting) for cool stars. We find a nearlyconstant O overundance in metal-poor stars ([Fe/H]<-0.8), at a meanvalue of 0.46+/- 0.02 dex (sigma =0.12, 32 stars), with only a gentleslope with [Fe/H] ( ~ -0.1); this result is different from the steeperslope recently obtained using OH band in the near UV. If only bonafideunmixed stars are considered, C abundances scale with Fe ones (i.e.[C/Fe]~ 0) down to [Fe/H] ~ -2.5. Due to our adoption of a differentT_eff scale, we do not confirm the slight C excess in the most metalpoor disk dwarfs (-0.8<[Fe/H]<-0.4) found in previousinvestigations. Na abundances scale as Fe ones in the high metallicityregime, while metal-poor stars present a Na underabundance. None of thefield stars analyzed belong to the group of O-poor and Na-rich starsobserved in globular clusters. Na is deficient with respect to Mg inhalo and thick disk stars; within these populations, Na deficiency maybe a slow function of [Mg/H]. Solar [Na/Mg] ratios are obtained for thindisk stars. Tables~ 2 to 9 are only available in electronic form at theCDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or viahttp://cdsweb.u-strabg.fr/Abstract.html
| A Consistency Test of Spectroscopic Gravities for Late-Type Stars Chemical analyses of late-type stars are usually carried out followingthe classical recipe: LTE line formation and homogeneous,plane-parallel, flux-constant, and LTE model atmospheres. We reviewdifferent results in the literature that have suggested significantinconsistencies in the spectroscopic analyses, pointing out thedifficulties in deriving independent estimates of the stellarfundamental parameters and hence, detecting systematic errors. Thetrigonometric parallaxes measured by the Hipparcos mission provideaccurate appraisals of the stellar surface gravity for nearby stars,which are used here to check the gravities obtained from thephotospheric iron ionization balance. We find an approximate agreementfor stars in the metallicity range -1.0<=[Fe/H]<=0, but thecomparison shows that the differences between the spectroscopic andtrigonometric gravities decrease toward lower metallicities for moremetal-deficient dwarfs (-2.5<=[Fe/H]<=-1.0), which casts a shadowupon the abundance analyses for extreme metal-poor stars that make useof the ionization equilibrium to constrain the gravity. The comparisonwith the strong-line gravities derived by Edvardsson and Fuhrmannconfirms that this method provide systematically larger gravities thanthe ionization balance. The strong-line gravities get closer to thephysical ones for the stars analyzed by Fuhrmann, but they are evenfurther away than the iron ionization gravities for the stars of lowergravities in Edvardsson's sample. The confrontation of the deviations ofthe iron ionization gravities in metal-poor stars, reported here withdepartures from the excitation balance found in the literature, showthat they are likely to be induced by the same physical mechanism.
| A Model for Calculating the Abundances of Neutron-Capture Elements in Metal-poor Stars Several previous studies on the abundances of neutron-capture elementshave indicated that, for most metal-poor stars, the observed abundancesof the heavy elements cannot be matched by only one neutron-captureprocess, either the solar system r-process or the solar s-processabundances. However, the observed abundances can be well matched by thecombined contributions from both of these solar system neutron-captureprocesses in certain proportions. So it is necessary to determine therelative contributions from the individual neutron-capture processes tothe abundances of the heavy elements in metal-poor stars. In this paperwe suggest a new concept of component coefficients to describe therelative contributions of the individual n-processes to the synthesis ofthe heavy elements and we set up a model to calculate the componentcoefficients and the abundances of heavy elements in metal-poor starswith different metallicities. With this model, we then calculate thecomponent coefficients and the abundances of the heavy elements in 18metal-poor stars. We find that, for most sample stars, the modelcalculations are basically in agreement with the observations of theheavy elemental abundances within the error limits and the fits of themodel predictions are much better for the heaviest elements than for thelighter elements, specifically for Sr, Y, and Zr. We discuss this resultand give a possible explanation for it. Moreover, we also discuss thephysical meanings of the component coefficients.
| A method of studying the abundances of heavy elements in metal-poor stars. Not Available
| Lithium in population I subgiants We present a lithium survey for a sample of 91 Pop. I stars. JHKLphotometry was also obtained for 61 stars in the sample. Besides Liabundances, [Fe/H] values were derived. Thanks to Hipparcos parallaxes,we could infer absolute V magnitudes for our sample stars and were ableto place them on the color-magnitude diagram, which allowed us toconstrain their evolutionary status. Masses and ages were derived formost of the stars by comparison with evolutionary tracks. The sample wasoriginally selected so to include class IV stars later thanspectral-type F0, but, based on the location on the color-magnitudediagram, we found a posteriori that a fraction of the stars (about 20%)are either main sequence stars or evolved giants. As it is the case fordwarfs and giants, a large spread in lithium abundance is present amongthe subgiants in our sample. As expected, the average lithium decreasesas the stars evolve along the subgiant branch; however, there is not aone-to-one relationship between the position on the color-magnitudediagram and lithium abundance, and the observed dispersion is onlypartially explainable as due to a dispersion in mass, metallicity, andage. In particular, a dispersion in lithium is seen among slightlyevolved subgiants with masses close to solar but in the sameevolutionary stage as the G2 IV star beta Hyi. The comparison of thebeta Hyi-like sample with a sample of non evolved solar-like starsindeed suggests that beta Hyi has most likely evolved from a mainsequence Li-rich star, rather than from a Li-poor star (like the Sun)that has dredged-up previously stored lithium. Our sample includesseveral stars that have completed the first-dredge up lithium dilution,but that have not yet evolved to the evolutionary point whereextra-mixing in the giant phase is thought to occur. A large number ofthem have Li abundances considerably below the theoretical predictionsof first dredge-up dilution. We confirm that this is due to the factthat the progenitors of these stars are most likely stars that havedepleted lithium while on the main sequence; the fraction of post-dredgeup Li rich/poor stars, in fact, is consistent with the observeddistribution of Li abundances among stars that have just left the mainsequence. The signature of the second mixing (or RGB extra-mixing)episode is evident in the log n(Li) vs. B-V and log n(Li) vs. M_boldistributions of the stars in the sample; it seems however that theextra-mixing occurs at luminosities lower than predicted by the modelsof Charbonnel (1994). Finally, a few evolved giants are found thatshould have passed the second mixing episode, but that do not show signsof it. At least half of them are spectroscopic binaries. Based onobservations carried out at the European Southern Observatory, La Silla,Chile
| Astrometric positions of stars with high proper motions in the Southern Hemisphere Several stars with large proper motions, cited by W.J. Luyten, wereincluded in the preliminary programme for the HIPPARCOS mission. Whenperforming preparatory measurements of plates, difficulties wereencountered in identifying certain of these stars when relying only onpublished coordinates. We have taken advantage of this work whichrelates to the southern sky in order to determine the astrometricposition of the greatest possible number of these objects, even forthose which were not included in the programme. Catalogue is onlyavailable in electronic form at the CDS via anonymous ftp tocdsarc.u-strasbg.fr (130.79.128.5) or viahttp://cdsweb.u-strasbg.fr/Abstract.html
| A catalogue of [Fe/H] determinations: 1996 edition A fifth Edition of the Catalogue of [Fe/H] determinations is presentedherewith. It contains 5946 determinations for 3247 stars, including 751stars in 84 associations, clusters or galaxies. The literature iscomplete up to December 1995. The 700 bibliographical referencescorrespond to [Fe/H] determinations obtained from high resolutionspectroscopic observations and detailed analyses, most of them carriedout with the help of model-atmospheres. The Catalogue is made up ofthree formatted files: File 1: field stars, File 2: stars in galacticassociations and clusters, and stars in SMC, LMC, M33, File 3: numberedlist of bibliographical references The three files are only available inelectronic form at the Centre de Donnees Stellaires in Strasbourg, viaanonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5), or viahttp://cdsweb.u-strasbg.fr/Abstract.html
| Abundances of light elements in metal-poor stars. I. Atmospheric parameters and a new T_eff_ scale We present atmospheric parameters for about 300 stars of differentchemical composition, whose spectra will be used to study the galacticenrichment of Fe and light elements. These parameters were derived usingan homogeneous iterative procedure, which considers new calibrations ofcolour-T_eff_ relations for F, G and K-type stars based on Infrared FluxMethod (IRFM) and interferometric diameters for population I stars, andthe Kurucz (1992) model atmospheres. We found that these calibrationsyield a self-consistent set of atmospheric parameters forT_eff_>4400K, representing a clear improvement over results obtainedwith older model atmospheres. Using this T_eff_ -scale and Feequilibrium of ionization, we obtained very low gravities (implyingluminosities incompatible with that expected for RGB stars) formetal-poor stars cooler than 4400K; this might be due either to amoderate Fe overionization (expected from statistical equilibriumcalculations) or to inadequacy of Kurucz models to describe theatmospheres of very cool giants. Our T_eff_ scale is compared with otherscales recently used for metal-poor stars; it agrees well with thoseobtained using Kurucz (1992) models, but it gives much larger T_eff_'sthan those obtained using OSMARCS models (Edvardsson et al. 1993). Thisdifference is attributed to the different treatment of convection in thetwo sets of models. For the Sun, the Kurucz (1992) model appears to bepreferable to the OSMARCS ones because it better predicts the solar limbdarkening; furthermore, we find that our photometric T_eff_ 's formetal-poor stars agree well with both direct estimates based on theIRFM, and with T_eff_'s derived from Hα wings when using Kuruczmodels.
| Chemistry and Kinematics in the Solar Neighborhood: Implications for Stellar Populations and for Galaxy Evolution Abstract image available at:http://adsabs.harvard.edu/cgi-bin/nph-bib_query?1995AJ....110.2771W&db_key=AST
| Vitesses radiales. Catalogue WEB: Wilson Evans Batten. Subtittle: Radial velocities: The Wilson-Evans-Batten catalogue. We give a common version of the two catalogues of Mean Radial Velocitiesby Wilson (1963) and Evans (1978) to which we have added the catalogueof spectroscopic binary systems (Batten et al. 1989). For each star,when possible, we give: 1) an acronym to enter SIMBAD (Set ofIdentifications Measurements and Bibliography for Astronomical Data) ofthe CDS (Centre de Donnees Astronomiques de Strasbourg). 2) the numberHIC of the HIPPARCOS catalogue (Turon 1992). 3) the CCDM number(Catalogue des Composantes des etoiles Doubles et Multiples) byDommanget & Nys (1994). For the cluster stars, a precise study hasbeen done, on the identificator numbers. Numerous remarks point out theproblems we have had to deal with.
| Analyses of archival data for cool dwarfs. 2: A catalog of temperatures A calibration presented in a previous paper is used in this paper toderive temperatures for FGK stars near the main sequence. Thecalibration is checked against published counterparts, and it is foundthat previous calibrations have not established K-dwarf temperatures inparticular beyond reasonable doubt. The database assembled to derive thetemperatures is described, and the problems posed by close binaries areevaluated. The newly derived temperatures are used to check a line-depthratio proposed as a thermometer by Gray and Johanson (1991, PASP, 103,439), and it is found that the ratio is metallicity-sensitive.Temperatures are given for a total of 417 stars.
| Metal enrichment in elliptical galaxies and globular clusters through the study of iron and H-Beta spectral indices Chemical evolution of elliptical galaxies and globular clusters isaddressed through a combined study of the iron indices at 5270 and 5335A, and of the H-Beta line strength. The observational database of 74standard stars (both dwarfs and giants) referred to in a previous paper(Buzzoni et al. (1992)) complemented with the data of Faber et al.(1985) and Gorgas et al. (1993) allowed us to explore here Fe and H-Betaindex dependence on stellar temperature, gravity, and metallicity. Thederived fitting functions were then included into Buzzoni's (1989) codefor population synthesis in order to derive expected integrated indicesfor simple stellar populations and compare with observations. Partitionof metals in the current chemical mix of galaxies and globulars has beenconstrained supporting the claim that light alpha elements might beenhanced in the globular cluster metal-poor population. An alternativeconclusion resting on the standard framework with (alpha/Fe) = 0 wouldrequire a systematically larger age, about 18-20 Gyr. Iron and magnesiumin ellipticals are found in average solar but a systematic trend of(Mg/Fe) vs global metallicity does exist with iron more deficient withrespect to magnesium at high Z. We conclude that this effect mightindicate that Fe abundance per unit mass in the galaxies is constant(suggesting a constant rate per unit mass of SN I events) while lightmetals supplied by SNe II should have been more effectively enrichedwith increasing galactic total mass.
| Abundances of neutron-capture elements in metal-poor stars We use a large set of high S/N, high resolution spectra of 19 stars with-2.8<[Fe/H]<0 to study the abundances of neutron-rich elements inmetal-poor stars. Basic data (atmospheric parameters, iron abundances,abundance indices, atomic and line parameters) are carefully examinedboth for the Sun and for the program stars, and extensive use is made ofcomparisons with synthetic spectra. New analyses of solar abundances ofSr, La, and Ce are presented; deduced abundances agree well withmeteoritic results. Our stellar abundances are briefly compared withnucleosynthesis predictions. The main results are: 1. Those elementswhose solar abundances are mainly attributed to the s-process (e.g. Baand La) are overdeficient in extremely metal-poor stars ([Fe/H]<-2)with respect to those elements whose solar abundances are mainlyattributed to the r-process (e.g. Eu). We did not find any clearevidence for a plateau in abundance ratios like [Ba/Eu] at these lowvalues of [Fe/H]. 2. Eu itself begins to decline (with respect either toFe or Mg) in the most metal-poor stars, with perhaps a sharp drop instars with [Fe/H]<-2.5. If the r-process mainly occurs in SNexplosions of massive stars, then the abundances of its products in theejecta are a function of initial stellar mass and/or metallicity. 3. Theabundance pattern of neutron-capture elements in metal-poor stars showclear differences with respect to scaled solar-system r-processnucleosynthesis predictions; e.g. there is a relative excess of Ba(attributed mainly to the s-process). This pattern may be explained ifthe contribution of the s-process to the solar abundances of heavyelements is overestimated, or the production of heavy elements throughthe r-process was different when [Fe/H] was much lower than the presentvalue, or there was an early onset of the contribution by the maincomponent of the s-process in the Galactic chemical evolution.
| Optical Polarization of 1000 Stars Within 50-PARSECS from the Sun Abstract image available at:http://adsabs.harvard.edu/cgi-bin/nph-bib_query?1993A&AS..101..551L&db_key=AST
| The magnesium Mg2 index as an indicator of metallicity in elliptical galaxies A quantitative calibration of the Mg2 index is attempted deriving ametallicity scale for elliptical galaxies. The dependence of the indexon stellar temperature, gravity, and metallicity has been studiedthrough spectroscopic observations of 87 standards applying the derivedcalibration to models for stellar population synthesis. Buzzoni's (1989)computational code has been used to explore the behavior of the indexversus age, IMF, and metallicity of simple stellar populations,inferring galactic metallicity for the Davies et al. (1987) extensiveobservational database. It appears that ellipticals are old metal-richsystems, with age about 15 Gyr and (Fe/H) = + 0.15. A large spread ofnearly one order of magnitude is, however, derived for metallicity amongsingle galaxies confirming that (Fe/H) is the driving parameter inducingthe color spread in the galaxy population. Evolutionary behavior of Mg2is briefly discussed giving its expected variations at early epochs forcomparison with high-redshift galaxies.
| A catalogue of Fe/H determinations - 1991 edition A revised version of the catalog of Fe/H determinations published by G.Cayrel et al. (1985) is presented. The catalog contains 3252 Fe/Hdeterminations for 1676 stars. The literature is complete up to December1990. The catalog includes only Fe/H determinations obtained from highresolution spectroscopic observations based on detailed spectroscopicanalyses, most of them carried out with model atmospheres. The catalogcontains a good number of Fe/H determinations for stars from open andglobular clusters and for some supergiants in the Magellanic Clouds.
| Search for Vega-like nearby stars with 12 micron excess The identification of Vega-like main-sequence stars with 10-micronexcess would permit important measurements of the spatial extent of theradiating material with ground-based telescopes. In fact, 55 of the 548nearby A, F, G, and K dwarfs with IRAS catalog magnitudes at 12 micronsappear to have excess 12-micron flux. However, for only two of thesestars, Beta Pic and Zeta Lep, was it possible, using small-aperturephotometry at 2.2 and 10 microns, to verify that the 12-micron excess iswith high likelihood associated with the star. For the remaining starsthe apparent 12-micron color of the 106 A, F, G, and K stars in theobserving program is only 0.02 mag. Excess flux due to a Vega-like cloudwhich may surround some of the sources in the observing program, likeAlpha Lyrae, is thus typically not detectable at 10 microns.
| Trends in copper and zinc abundances for disk and halo stars Results are presented of spectroscopic investigations of the Cu and Znabundances in 40 disk and halo stars. The results confirmed and extendedthe previous findings of Sneden and Crocker (1988). It is shown that theZn abundances closely track the overall metallicities: Zn/M = +0.04 + or- 0.02. However, all metal-poor stars displayed Cu deficiencies, whichappear to vary linearly with metallicity: Cu/M = 0.38(M/H) + 0.15. TheCu-abundance trend in giants of 15 globular clusters is in goodagreement with that of the field stars. The nucleosynthesis implicationsof the obtained results are discussed.
|
הכנס מאמר חדש
לינקים קשורים
הכנס לינק חדש
משמש של הקבוצה הבאה
|
תצפית ומידע אסטרומטרי
קטלוגים וכינוים:
|