Főoldal     Alapinformációk     To Survive in the Universe    
Inhabited Sky
    News@Sky     Asztrofotók     Kollekció     Fórum     Blog New!     GYIK     Sajtó     Bejelentkezés  

TYC 4113-1287-1


Tartalom

Képek

Kép feltöltése

DSS Images   Other Images


Kapcsolódó cikkek

Masses and luminosities of O- and B-type stars and red supergiants
Massive stars are of interest as progenitors of supernovae, i.e.neutron stars and black holes, which can be sources of gravitationalwaves. Recent population synthesis models can predict neutron star andgravitational wave observations but deal with a fixed supernova rate oran assumed initial mass function for the population of massive stars. Here we investigate those massive stars, which are supernovaprogenitors, i.e. with O- and early B-type stars, and also allsupergiants within 3 kpc. We restrict our sample to those massive starsdetected both in 2MASS and observed by Hipparcos, i.e. only those starswith parallax and precise photometry. To determine the luminositieswe calculated the extinctions from published multi-colour photometry,spectral types, luminosity class, all corrected for multiplicity andrecently revised Hipparcos distances. We use luminosities andtemperatures to estimate the masses and ages of these stars usingdifferent models from different authors. Having estimated theluminosities of all our stars within 3 kpc, in particular for all O- andearly B-type stars, we have determined the median and mean luminositiesfor all spectral types for luminosity classes I, III, and V. Ourluminosity values for supergiants deviate from earlier results: Previouswork generally overestimates distances and luminosities compared to ourdata, this is likely due to Hipparcos parallaxes (generally moreaccurate and larger than previous ground-based data) and the fact thatmany massive stars have recently been resolved into multiples of lowermasses and luminosities. From luminosities and effective temperatureswe derived masses and ages using mass tracks and isochrones fromdifferent authors. From masses and ages we estimated lifetimes andderived a lower limit for the supernova rate of ?20 events/Myraveraged over the next 10 Myr within 600 pc from the sun. These data arethen used to search for areas in the sky with higher likelihood for asupernova or gravitational wave event (like OB associations).

The Origins and Evolutionary Status of B Stars Found Far from the Galactic Plane. II. Kinematics and Full Sample Analysis
This paper continues the analysis of faint high-latitude B stars fromMartin. Here we analyze the kinematics of the stars and combine themwith the abundance information from the first paper to classify eachone. The sample contains 31 Population I runaways, 15 old evolved stars(including 5 blue horizontal-branch [BHB] stars, 3 post-HB stars, 1pulsating helium dwarf, and 6 stars of ambiguous classification), 1 Fdwarf, and 2 stars that do not easily fit in one of the othercategories. No star in the sample unambiguously shows thecharacteristics of a young massive star formed in situ in the halo. Thetwo unclassified stars are probably extreme Population I runaways. Thelow binary frequency and rotational velocity distribution of thePopulation I runaways imply that most were ejected from dense starclusters by the dynamic ejection scenario. However, we remain puzzled bythe lack of runaway Be stars. We also confirm that PB 166 and HIP 41979are both nearby solar-metallicity BHB stars.Based on observations made at the 2.1 m Otto Struve Telescope ofMcDonald Observatory, operated by the University of Texas at Austin.

The Origins and Evolutionary Status of B Stars Found Far from the Galactic Plane. I. Composition and Spectral Features
The existence of faint blue stars far above the Galactic plane that havespectra that are similar to nearby Population I B stars presents severalinteresting questions. Among them are the following: Can a Population IB star travel from the disk to a position many kiloparsecs above theplane in a relatively short main-sequence lifetime? Is it possible thatsingle massive star formation is occurring far from the Galactic plane?Are these objects something else masquerading as main-sequence B stars?This paper (the first of two) analyzes the abundances of a sample ofthese stars and reveals several that are chemically similar to nearbyPopulation I B stars, whereas others clearly have abundance patternsmore like those expected in blue horizontal-branch (BHB) orpost-asymptotic giant branch stars. Several of those with old evolvedstar abundances also have interesting features of note in their spectra.We also consider why this sample does not have any classical Be starsand identify at least two nearby solar-metallicity BHB stars.Based on observations made at the 2.1 m Otto Struve Telescope ofMcDonald Observatory operated by the University of Texas at Austin.

Ultraviolet photometry with the Astronomical Netherlands Satellite /ANS/ - Faint blue stars in the halo
Blue stars at high galactic latitudes have been observed with the UVtelescope on board ANS. In this paper a subset of the collected datapertaining to the cooler stars is discussed. Most of them have energydistributions in general agreement with the visual spectral type. Onestar is exceptionally blue, and of seven possible horizontal-branchstars, two have UV energy distributions distinct from main-sequencestars in the sense that they have an excess at 1550 A and a large Balmerjump.

Új cikk hozzáadása


Kapcsolódó hivatkozások

  • - (nincs kapcsolódó hivatkozás) -
Új link hozzáadása


Besorolás csoportokba:


Pozíciós és asztrometriai adatok

Csillagkép:Zsiráf
Rektaszcenzió:07h46m02.54s
Deklináció:+61°21'47.0"
Vizuális fényesség:9.898
RA sajátmozgás:1.7
Dec sajátmozgás:-6.3
B-T magnitude:9.78
V-T magnitude:9.889

Katalógusok és elnevezések:
Megfelelő nevek   (Edit)
TYCHO-2 2000TYC 4113-1287-1
USNO-A2.0USNO-A2 1500-04910283
HIPHIP 37903

→ További katalógusok és elnevezések lekérése VizieR-ből