Home     Getting Started     To Survive in the Universe    
Inhabited Sky
    News@Sky     Astro Photo     The Collection     Forum     Blog New!     FAQ     Press     Login  

TYC 3977-1455-1


Contents

Images

Upload your image

DSS Images   Other Images


Related articles

A catalogue of young runaway Hipparcos stars within 3 kpc from the Sun
Traditionally, runaway stars are O- and B-type stars with large peculiarvelocities. We would like to extend this definition to young stars (upto ?50 Myr) of any spectral type and to identify those present in theHipparcos catalogue by applying different selection criteria, such aspeculiar space velocities or peculiar one-dimensional velocities.Runaway stars are important for studying the evolution of multiple starsystems or star clusters, as well as for identifying the origins ofneutron stars. We compile the distances, proper motions, spectral types,luminosity classes, V magnitudes and B-V colours, and we utilizeevolutionary models from different authors to obtain star ages. We studya sample of 7663 young Hipparcos stars within 3 kpc from the Sun. Theradial velocities are obtained from the literature. We investigate thedistributions of the peculiar spatial velocity and the peculiar radialvelocity as well as the peculiar tangential velocity and itsone-dimensional components and we obtain runaway star probabilities foreach star in the sample. In addition, we look for stars that aresituated outside any OB association or OB cluster and the Galactic planeas well as stars for which the velocity vector points away from themedian velocity vector of neighbouring stars or the surrounding local OBassociation/cluster (although the absolute velocity might be small). Wefind a total of 2547 runaway star candidates (with a contamination ofnormal Population I stars of 20 per cent at most). Thus, aftersubtracting these 20 per cent, the runaway frequency among young starsis about 27 per cent. We compile a catalogue of runaway stars, which isavailable via VizieR.

Masses and luminosities of O- and B-type stars and red supergiants
Massive stars are of interest as progenitors of supernovae, i.e.neutron stars and black holes, which can be sources of gravitationalwaves. Recent population synthesis models can predict neutron star andgravitational wave observations but deal with a fixed supernova rate oran assumed initial mass function for the population of massive stars. Here we investigate those massive stars, which are supernovaprogenitors, i.e. with O- and early B-type stars, and also allsupergiants within 3 kpc. We restrict our sample to those massive starsdetected both in 2MASS and observed by Hipparcos, i.e. only those starswith parallax and precise photometry. To determine the luminositieswe calculated the extinctions from published multi-colour photometry,spectral types, luminosity class, all corrected for multiplicity andrecently revised Hipparcos distances. We use luminosities andtemperatures to estimate the masses and ages of these stars usingdifferent models from different authors. Having estimated theluminosities of all our stars within 3 kpc, in particular for all O- andearly B-type stars, we have determined the median and mean luminositiesfor all spectral types for luminosity classes I, III, and V. Ourluminosity values for supergiants deviate from earlier results: Previouswork generally overestimates distances and luminosities compared to ourdata, this is likely due to Hipparcos parallaxes (generally moreaccurate and larger than previous ground-based data) and the fact thatmany massive stars have recently been resolved into multiples of lowermasses and luminosities. From luminosities and effective temperatureswe derived masses and ages using mass tracks and isochrones fromdifferent authors. From masses and ages we estimated lifetimes andderived a lower limit for the supernova rate of ?20 events/Myraveraged over the next 10 Myr within 600 pc from the sun. These data arethen used to search for areas in the sky with higher likelihood for asupernova or gravitational wave event (like OB associations).

Absolute proper motions of open clusters. I. Observational data
Mean proper motions and parallaxes of 205 open clusters were determinedfrom their member stars found in the Hipparcos Catalogue. 360 clusterswere searched for possible members, excluding nearby clusters withdistances D < 200 pc. Members were selected using ground basedinformation (photometry, radial velocity, proper motion, distance fromthe cluster centre) and information provided by Hipparcos (propermotion, parallax). Altogether 630 certain and 100 possible members werefound. A comparison of the Hipparcos parallaxes with photometricdistances of open clusters shows good agreement. The Hipparcos dataconfirm or reject the membership of several Cepheids in the studiedclusters. Tables 1 and 2 are only available in electronic form at theCDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or viahttp://cdsweb.u-strasbg.fr/Abstract.html

A HIPPARCOS Census of the Nearby OB Associations
A comprehensive census of the stellar content of the OB associationswithin 1 kpc from the Sun is presented, based on Hipparcos positions,proper motions, and parallaxes. It is a key part of a long-term projectto study the formation, structure, and evolution of nearby young stellargroups and related star-forming regions. OB associations are unbound``moving groups,'' which can be detected kinematically because of theirsmall internal velocity dispersion. The nearby associations have a largeextent on the sky, which traditionally has limited astrometricmembership determination to bright stars (V<~6 mag), with spectraltypes earlier than ~B5. The Hipparcos measurements allow a majorimprovement in this situation. Moving groups are identified in theHipparcos Catalog by combining de Bruijne's refurbished convergent pointmethod with the ``Spaghetti method'' of Hoogerwerf & Aguilar.Astrometric members are listed for 12 young stellar groups, out to adistance of ~650 pc. These are the three subgroups Upper Scorpius, UpperCentaurus Lupus, and Lower Centaurus Crux of Sco OB2, as well as VelOB2, Tr 10, Col 121, Per OB2, alpha Persei (Per OB3), Cas-Tau, Lac OB1,Cep OB2, and a new group in Cepheus, designated as Cep OB6. Theselection procedure corrects the list of previously known astrometricand photometric B- and A-type members in these groups and identifiesmany new members, including a significant number of F stars, as well asevolved stars, e.g., the Wolf-Rayet stars gamma^2 Vel (WR 11) in Vel OB2and EZ CMa (WR 6) in Col 121, and the classical Cepheid delta Cep in CepOB6. Membership probabilities are given for all selected stars. MonteCarlo simulations are used to estimate the expected number of interloperfield stars. In the nearest associations, notably in Sco OB2, thelater-type members include T Tauri objects and other stars in the finalpre-main-sequence phase. This provides a firm link between the classicalhigh-mass stellar content and ongoing low-mass star formation. Detailedstudies of these 12 groups, and their relation to the surroundinginterstellar medium, will be presented elsewhere. Astrometric evidencefor moving groups in the fields of R CrA, CMa OB1, Mon OB1, Ori OB1, CamOB1, Cep OB3, Cep OB4, Cyg OB4, Cyg OB7, and Sct OB2, is inconclusive.OB associations do exist in many of these regions, but they are eitherat distances beyond ~500 pc where the Hipparcos parallaxes are oflimited use, or they have unfavorable kinematics, so that the groupproper motion does not distinguish it from the field stars in theGalactic disk. The mean distances of the well-established groups aresystematically smaller than the pre-Hipparcos photometric estimates.While part of this may be caused by the improved membership lists, arecalibration of the upper main sequence in the Hertzsprung-Russelldiagram may be called for. The mean motions display a systematicpattern, which is discussed in relation to the Gould Belt. Six of the 12detected moving groups do not appear in the classical list of nearby OBassociations. This is sometimes caused by the absence of O stars, but inother cases a previously known open cluster turns out to be (part of) anextended OB association. The number of unbound young stellar groups inthe solar neighborhood may be significantly larger than thoughtpreviously.

The Initial Mass Function and Massive Star Evolution in the OB Associations of the Northern Milky Way
Abstract image available at:http://adsabs.harvard.edu/cgi-bin/nph-bib_query?1995ApJ...454..151M&db_key=AST

Distance Moduli of Open Clusters.
Abstract image available at:http://adsabs.harvard.edu/cgi-bin/nph-bib_query?1965ApJS...12..215H&db_key=AST

Submit a new article


Related links

  • - No Links Found -
Submit a new link


Member of following groups:


Observation and Astrometry data

Constellation:ケフェウス座
Right ascension:22h12m08.76s
Declination:+57°16'20.1"
Apparent magnitude:10.65
Proper motion RA:-5.5
Proper motion Dec:5.9
B-T magnitude:11.436
V-T magnitude:10.715

Catalogs and designations:
Proper Names   (Edit)
TYCHO-2 2000TYC 3977-1455-1
USNO-A2.0USNO-A2 1425-12985096
HIPHIP 109603

→ Request more catalogs and designations from VizieR