Contents
Images
Upload your image
DSS Images Other Images
Related articles
Improvement of Hipparcos Proper Motions in Declination More than a decade elapsed after the HIPPARCOS ESA mission (ESA 1997)observations have been collected. This first astronomical satellitemission was less than 4 years long so that 1991.25 is the epoch of theHIPPARCOS Catalogue. Many other projects have checked or improvedHIPPARCOS data. Also, a long series of ground - based opticalobservations of some stars included in HIPPARCOS Catalogue, made withPhotographic Zenith Tubes (PZT) are useful for the task of improving theproper motions of these stars. The ARIHIP Catalogue (after ACT, TYCHO -2, FK6, GC+HIP, TYC2+HIP) is a combination of the HIPPARCOS and someground - based data, and the ARIHIP proper motions are more accuratethan the HIPPARCOS ones. Here we present a new step of our procedure ofcalculation; between PZT data we added the HIPPARCOS position withsuitable weight - the point with the coordinates (1991.25, 0ŭ0)in our case. The method was applied to 202 stars observed at RichmondPZTs in the course of a few decades. The result is better proper motionsin declination for these HIPPARCOS stars, and a good agreement withARIHIP proper motions (we found 128 common Richmond and ARIHIP stars tocheck our result). Also, we present the result for other 74 Richmondstars which are not found in ARIHIP.
| An Eccentric Hot Jupiter Orbiting the Subgiant HD 185269 We report the detection of a Jupiter-mass planet in a 6.838 day orbitaround the 1.28 Msolar subgiant HD 185269. The eccentricityof HD 185269b (e=0.30) is unusually large compared to other planetswithin 0.1 AU of their stars. Photometric observations demonstrate thatthe star is constant to +/-0.0001 mag on the radial velocity period,strengthening our interpretation of a planetary companion. This planetwas detected as part of our radial velocity survey of evolved starslocated on the subgiant branch of the H-R diagram-also known as theHertzsprung gap. These stars, which have masses between 1.2 and 2.5Msolar, play an important role in the investigation of thefrequency of extrasolar planets as a function of stellar mass.Based on observations obtained at the Lick Observatory, which isoperated by the University of California.
| Dwarfs in the Local Region We present lithium, carbon, and oxygen abundance data for a sample ofnearby dwarfs-a total of 216 stars-including samples within 15 pc of theSun, as well as a sample of local close giant planet (CGP) hosts (55stars) and comparison stars. The spectroscopic data for this work have aresolution of R~60,000, a signal-to-noise ratio >150, and spectralcoverage from 475 to 685 nm. We have redetermined parameters and derivedadditional abundances (Z>10) for the CGP host and comparison samples.From our abundances for elements with Z>6 we determine the meanabundance of all elements in the CGP hosts to range from 0.1 to 0.2 dexhigher than nonhosts. However, when relative abundances ([x/Fe]) areconsidered we detect no differences in the samples. We find nodifference in the lithium contents of the hosts versus the nonhosts. Theplanet hosts appear to be the metal-rich extension of local regionabundances, and overall trends in the abundances are dominated byGalactic chemical evolution. A consideration of the kinematics of thesample shows that the planet hosts are spread through velocity space;they are not exclusively stars of the thin disk.
| Effective temperature scale and bolometric corrections from 2MASS photometry We present a method to determine effective temperatures, angularsemi-diameters and bolometric corrections for population I and II FGKtype stars based on V and 2MASS IR photometry. Accurate calibration isaccomplished by using a sample of solar analogues, whose averagetemperature is assumed to be equal to the solar effective temperature of5777 K. By taking into account all possible sources of error we estimateassociated uncertainties to better than 1% in effective temperature andin the range 1.0-2.5% in angular semi-diameter for unreddened stars.Comparison of our new temperatures with other determinations extractedfrom the literature indicates, in general, remarkably good agreement.These results suggest that the effective temperaure scale of FGK starsis currently established with an accuracy better than 0.5%-1%. Theapplication of the method to a sample of 10 999 dwarfs in the Hipparcoscatalogue allows us to define temperature and bolometric correction (Kband) calibrations as a function of (V-K), [m/H] and log g. Bolometriccorrections in the V and K bands as a function of T_eff, [m/H] and log gare also given. We provide effective temperatures, angularsemi-diameters, radii and bolometric corrections in the V and K bandsfor the 10 999 FGK stars in our sample with the correspondinguncertainties.
| The fundamental parameters of the Algol binary AI Draconis revisited We present the results of an analysis of our infrared light curves ofthe Algol-type binary AI Draconis in the J, H and K bands, and ofpublished light curves in the B, V and Strömgren uvby bands,together with spectra obtained by us. The analysis of the light curveswas carried out using a code based on ATLAS model atmospheres and Rochegeometry.The small contribution of the secondary cool component to the totallight of the system in the visible, producing light curves with veryshallow secondary eclipses, makes the stellar and orbital parametersderived from light-curve analysis in the visible spectral rangeuncertain. The larger contribution of the secondary star to the infraredfluxes makes this range particularly well suited to the derivation ofprecise orbital and stellar parameters in binaries of Algol type. Fromthe simultaneous solution of the infrared JHK light curves, we derivethe following absolute orbital and stellar parameters for the twocomponents: = 10160 +/- 160 K,Req,1= 2.12 +/- 0.04 Rsolar,log()1= 4.23; = 5586 +/-110 K, Req,2= 2.36 +/- 0.04 Rsolar,log()2= 3.76; M1= 2.86 +/- 0.09Msolar, q=M2/M1= 0.44 +/- 0.03; a= 7.62+/- 0.09 Rsolar, i= 76.53°+/- 0.3°, e~= 0.0. Here, and log() indicate average surfacevalues, Req is the equivalent radius of the deformed star anda is the orbital size.In our light-curve solutions, the secondary star of AI Dra fills itsRoche lobe (as also indicated by the spectroscopy), thus discountingclaims, based on UBV light curves, that both components of the binaryare located within their Roche lobes. The visible and infraredphotometry show no evidence of any significant infrared excess in thesystem, and the distance of AI Dra is estimated as d= 169 +/- 17 pc.Based on the spectra of AI Dra and template stars in the ranges8210-9060, 6250-7130 and 4040-4920 Å, we classify the stellarcomponents of AI Dra and find that the most probable spectral types areA0V (or perhaps A1V) for the primary and F9.5V for the secondary(although it could reach as far as G4V), respectively. From ourspectroscopic observations, the spectral evolution of AI Dra withorbital phase is also presented. Furthermore, we obtain the projectedrotational velocity of the secondary, whose value turns out to becompatible with the star filling its Roche lobe.
| The Geneva-Copenhagen survey of the Solar neighbourhood. Ages, metallicities, and kinematic properties of 14 000 F and G dwarfs We present and discuss new determinations of metallicity, rotation, age,kinematics, and Galactic orbits for a complete, magnitude-limited, andkinematically unbiased sample of 16 682 nearby F and G dwarf stars. Our63 000 new, accurate radial-velocity observations for nearly 13 500stars allow identification of most of the binary stars in the sampleand, together with published uvbyβ photometry, Hipparcosparallaxes, Tycho-2 proper motions, and a few earlier radial velocities,complete the kinematic information for 14 139 stars. These high-qualityvelocity data are supplemented by effective temperatures andmetallicities newly derived from recent and/or revised calibrations. Theremaining stars either lack Hipparcos data or have fast rotation. Amajor effort has been devoted to the determination of new isochrone agesfor all stars for which this is possible. Particular attention has beengiven to a realistic treatment of statistical biases and errorestimates, as standard techniques tend to underestimate these effectsand introduce spurious features in the age distributions. Our ages agreewell with those by Edvardsson et al. (\cite{edv93}), despite severalastrophysical and computational improvements since then. We demonstrate,however, how strong observational and theoretical biases cause thedistribution of the observed ages to be very different from that of thetrue age distribution of the sample. Among the many basic relations ofthe Galactic disk that can be reinvestigated from the data presentedhere, we revisit the metallicity distribution of the G dwarfs and theage-metallicity, age-velocity, and metallicity-velocity relations of theSolar neighbourhood. Our first results confirm the lack of metal-poor Gdwarfs relative to closed-box model predictions (the ``G dwarfproblem''), the existence of radial metallicity gradients in the disk,the small change in mean metallicity of the thin disk since itsformation and the substantial scatter in metallicity at all ages, andthe continuing kinematic heating of the thin disk with an efficiencyconsistent with that expected for a combination of spiral arms and giantmolecular clouds. Distinct features in the distribution of the Vcomponent of the space motion are extended in age and metallicity,corresponding to the effects of stochastic spiral waves rather thanclassical moving groups, and may complicate the identification ofthick-disk stars from kinematic criteria. More advanced analyses of thisrich material will require careful simulations of the selection criteriafor the sample and the distribution of observational errors.Based on observations made with the Danish 1.5-m telescope at ESO, LaSilla, Chile, and with the Swiss 1-m telescope at Observatoire deHaute-Provence, France.Complete Tables 1 and 2 are only available in electronic form at the CDSvia anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or viahttp://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/418/989
| Abundance Analysis of Planetary Host Stars. I. Differential Iron Abundances We present atmospheric parameters and iron abundances derived fromhigh-resolution spectra for three samples of dwarf stars: stars that areknown to host close-in giant planets (CGP), stars for which radialvelocity data exclude the presence of a close-in giant planetarycompanion (no-CGP), as well as a random sample of dwarfs with a spectraltype and magnitude distribution similar to that of the planetary hoststars (control). All stars have been observed with the same instrumentand have been analyzed using the same model atmospheres, atomic data,and equivalent width modeling program. Abundances have been deriveddifferentially to the Sun, using a solar spectrum obtained with Callistoas the reflector with the same instrumentation. We find that the ironabundances of CGP dwarfs are on average 0.22 dex greater than that ofno-CGP dwarfs. The iron abundance distributions of both the CGP andno-CGP dwarfs are different than that of the control dwarfs, while thecombined iron abundances have a distribution that is very similar tothat of the control dwarfs. All four samples (CGP, no-CGP, combined, andcontrol) have different effective temperature distributions. We showthat metal enrichment occurs only for CGP dwarfs with temperatures justbelow solar and ~300 K higher than solar, whereas the abundancedifference is insignificant at Teff around 6000 K.
| HIPPARCOS age-metallicity relation of the solar neighbourhood disc stars We derive age-metallicity relations (AMRs) and orbital parameters forthe 1658 solar neighbourhood stars to which accurate distances aremeasured by the HIPPARCOS satellite. The sample stars comprise 1382 thindisc stars, 229 thick disc stars, and 47 halo stars according to theirorbital parameters. We find a considerable scatter for thin disc AMRalong the one-zone Galactic chemical evolution (GCE) model. Orbits andmetallicities of thin disc stars show now clear relation each other. Thescatter along the AMR exists even if the stars with the same orbits areselected. We examine simple extension of one-zone GCE models whichaccount for inhomogeneity in the effective yield and inhomogeneous starformation rate in the Galaxy. Both extensions of the one-zone GCE modelcannot account for the scatter in age - [Fe/H] - [Ca/Fe] relationsimultaneously. We conclude, therefore, that the scatter along the thindisc AMR is an essential feature in the formation and evolution of theGalaxy. The AMR for thick disc stars shows that the star formationterminated 8 Gyr ago in the thick disc. As already reported by Grattonet al. (\cite{Gratton_et.al.2000}) and Prochaska et al.(\cite{Prochaska_et.al.2000}), thick disc stars are more Ca-rich thanthin disc stars with the same [Fe/H]. We find that thick disc stars showa vertical abundance gradient. These three facts, the AMR, verticalgradient, and [Ca/Fe]-[Fe/H] relation, support monolithic collapseand/or accretion of satellite dwarf galaxies as likely thick discformation scenarios. Tables 2 and 3 are only available in electronicform at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5)or via http:/ /cdsweb.u-strasbg.fr/ cgi-bin/qcat?J/ A+A/394/927
| On the Variability of F1-F9 Luminosity Class III-V Stars Hipparcos Satellite photometry of F1-F9 luminosity class III-V starsindicates that most are not particularly variable. A few stars for whichfurther study is desirable are identified.
| Vitesses radiales. Catalogue WEB: Wilson Evans Batten. Subtittle: Radial velocities: The Wilson-Evans-Batten catalogue. We give a common version of the two catalogues of Mean Radial Velocitiesby Wilson (1963) and Evans (1978) to which we have added the catalogueof spectroscopic binary systems (Batten et al. 1989). For each star,when possible, we give: 1) an acronym to enter SIMBAD (Set ofIdentifications Measurements and Bibliography for Astronomical Data) ofthe CDS (Centre de Donnees Astronomiques de Strasbourg). 2) the numberHIC of the HIPPARCOS catalogue (Turon 1992). 3) the CCDM number(Catalogue des Composantes des etoiles Doubles et Multiples) byDommanget & Nys (1994). For the cluster stars, a precise study hasbeen done, on the identificator numbers. Numerous remarks point out theproblems we have had to deal with.
| Mesures de vitesses radiales. VII. Accompagnement AU sol DU programme d'observation DU satellite Hipparcos. Radial velocities. VII. Ground based measurements for Hipparcos. We publish 734 radial velocities of stars distributed in 28 fields of4x4deg. We continue the PPO series (Fehrenbach et al. 1987; Duflot etal. 1990 and 1992), using the Fehrenbach objective prism method.
| The fourth meridian catalog of Besancon Observatory The catalog presented gives differential meridian positions for 670F-type stars between plus 15 and plus 45 deg declination. The positionsare reduced to the equinox of 1950.0 without proper motions; 333 FK4stars were used as reference stars. A minimum of three and an average offive transits of each program star were observed photoelectrically usinga Gautier transit circle and a Hog grid. The internal accuracy ofindividual measurements is shown to range from 0.013 sec in rightascension and 0.30 arcsec in declination for brighter stars under betterobserving conditions to 0.020 sec in right ascension and 0.38 arcsec indeclination for fainter stars under worse conditions. The standarderrors were applied to compute weighted mean positions, mean epochs, andunweighted means for the program stars. Mean corrections for 283 FK4stars are also provided.
| Star catalogs for the Washington and Richmond photographic zenith tubes. Abstract image available at:http://adsabs.harvard.edu/cgi-bin/nph-bib_query?1973AJ.....78..642M&db_key=AST
| UBV Photometry of 173 PZT Stars Abstract image available at:http://adsabs.harvard.edu/cgi-bin/nph-bib_query?1971PASP...83..177W&db_key=AST
| MK classifications for F and G-type stars. I. Abstract image available at:http://adsabs.harvard.edu/cgi-bin/nph-bib_query?1969AJ.....74..916H&db_key=AST
|
Submit a new article
Related links
Submit a new link
Member of following groups:
|
Observation and Astrometry data
Constellation: | こぎつね座 |
Right ascension: | 19h32m05.46s |
Declination: | +25°35'46.8" |
Apparent magnitude: | 6.879 |
Distance: | 79.302 parsecs |
Proper motion RA: | 48.3 |
Proper motion Dec: | 43.2 |
B-T magnitude: | 7.395 |
V-T magnitude: | 6.922 |
Catalogs and designations:
|