내용
사진
사진 업로드
DSS Images Other Images
관련 글
Debris Disks in the Upper Scorpius OB Association We present MIPS 24 ?m and 70 ?m photometry for 205 members of theUpper Scorpius OB Association. These data are combined with publishedMIPS photometry for 15 additional association members to assess thefrequency of circumstellar disks around 5 Myr old stars with spectraltypes between B0 and M5. Twelve stars have a detectable 70 ?m excess,each of which also has a detectable 24 ?m excess. A total of 54 starsare identified with a 24 ?m excess more than 32% above the stellarphotosphere. The MIPS observations reveal 19 excess sources—8A/F/G stars and 11 K/M stars—that were not previously identifiedwith an 8 ?m or 16 ?m excess. The lack of short-wavelengthemission and the weak 24 ?m excess suggests that these sources aredebris systems or the remnants of optically thick primordial disks withinner holes. Despite the wide range of luminosities of the stars hostingapparent debris systems, the excess characteristics are consistent withall stars having dust at similar orbital radii after factoring invariations in the radiation blowout particle size with spectral type.The results for Upper Sco are compared to similar photometric surveysfrom the literature to re-evaluate the evolution of debris emission.After considering the completeness limits of published surveys and theeffects of stellar evolution on the debris luminosity, we find that themagnitude of the 24 ?m excess around F-type stars increases betweenages of 5 and 17 Myr as found by previous studies, but at lsim2.6?confidence. For B7-A9 and G0-K5 stars, any variations in the observed 24?m excess emission over this age range are significant at less than2? confidence.
| The primordial binary population. II.. Recovering the binary population for intermediate mass stars in Scorpius OB2 We characterize the binary population in the young and nearby OBassociation Scorpius OB2 (Sco OB2)using available observations of visual, spectroscopic, and astrometricbinaries with intermediate-mass primaries. We take into accountobservational biases by comparing the observations with simulatedobservations of model associations. The available data indicate a largebinary fraction (> 70% with 3σ confidence), with a largeprobability that all intermediate mass stars in ScoOB2 are part of a binary system. The binary systems have amass ratio distribution of the form f_q(q) ∝ qγ_q,with γq ≈ -0.4. Sco OB2 has asemi-major axis distribution of the form f_a(a) ∝aγ_a with γa ≈ -1.0 (Öpik'slaw), in the range 5 {R}_ȯ⪉ a ⪉ 5× 106{R}_ȯ. The log-normal period distribution of Duquennoy & Mayor[1991, A&A, 248, 485] results in too few spectroscopic binaries,even if the model binary fraction is 100%. Sco OB2 isa young association with a low stellar density; its current populationis expected to be very similar to the primordial population. The factthat practically all stars in Sco OB2 are part of abinary (or multiple) system demonstrates that multiplicity is afundamental factor in the star formation process, at least forintermediate mass stars.Appendix A is only available in electronic form at http://www.aanda.org
| A brown dwarf desert for intermediate mass stars in Scorpius OB2? We present JHKS observations of 22 intermediate-mass stars inthe Scorpius-Centaurus OB association, obtained with the NAOS/CONICAsystem at the ESO Very Large Telescope. This survey was performed todetermine the status of (sub)stellar candidate companions of Sco OB2member stars of spectral type A and late-B. The distinction betweencompanions and background stars is made on the basis of a comparison toisochrones and additional statistical arguments. We are sensitive tocompanions with an angular separation of 0.1''-11'' (13-1430 AU) and thedetection limit is K_S=17 mag. We detect 62 stellar components of which18 turn out to be physical companions, 11 candidate companions, and 33background stars. Three of the 18 confirmed companions were previouslyundocumented as such. The companion masses are in the range 0.03{M}_ȯ ≤ M ≤ 1.19 {M}_ȯ, corresponding to mass ratios0.06 ≤ q ≤ 0.55. We include in our sample a subset of 9 targetswith multi-color ADONIS observations from Kouwenhoven et al. (2005,A&A, 430, 137). In the ADONIS survey secondaries with KS< 12 mag were classified as companions; those with KS >12 mag as background stars. The multi-color analysis in this paperdemonstrates that the simple K_S=12 mag criterion correctly classifiesthe secondaries in 80% of the cases. We reanalyse the total sample(i.e. NAOS/CONICA and ADONIS) and conclude that of the 176 secondaries,25 are physical companions, 55 are candidate companions, and 96 arebackground stars. Although we are sensitive (and complete) to browndwarf companions as faint as K_S=14 mag in the semi-major axis range130-520 AU, we detect only one, corresponding to a brown dwarf companionfraction of 0.5 ± 0.5% (M ⪆ 30 {M_J}). However, the number ofbrown dwarfs is consistent with an extrapolation of the (stellar)companion mass distribution into the brown dwarf regime. This indicatesthat the physical mechanism for the formation of brown dwarf companionsaround intermediate mass stars is similar to that of stellar companions,and that the embryo ejection mechanism does not need to be invoked inorder to explain the small number of brown dwarf companions amongintermediate mass stars in the Sco OB2 association.Based on observations collected at the European Southern Observatory,Chile. Program 073.D-0354(A). Appendix A is only available in electronicform at http://www.aanda.org
| Evidence for Mass-dependent Circumstellar Disk Evolution in the 5 Myr Old Upper Scorpius OB Association We present 4.5, 8, and 16 μm photometry from the Spitzer SpaceTelescope for 204 stars in the Upper Scorpius OB association. The dataare used to investigate the frequency and properties of circumstellardisks around stars with masses between ~0.1 and 20 Msolar atan age of ~5 Myr. We identify 35 stars that have emission at 8 or 16μm in excess of the stellar photosphere. The lower mass stars(~0.1-1.2 Msolar) appear surrounded by primordial opticallythick disks based on the excess emission characteristics. Stars moremassive than ~1.8 Msolar have lower fractional excessluminosities suggesting that the inner ~10 AU of the disk has beenlargely depleted of primordial material. None of the G and F stars(~1.2-1.8 Msolar) in our sample have an infrared excess atwavelengths <=16 μm. These results indicate that the mechanismsfor dispersing primordial optically thick disks operate lessefficiently, on average, for low-mass stars, and that longer timescalesare available for the buildup of planetary systems in the terrestrialzone for stars with masses <~1 Msolar.
| Effective temperature scale and bolometric corrections from 2MASS photometry We present a method to determine effective temperatures, angularsemi-diameters and bolometric corrections for population I and II FGKtype stars based on V and 2MASS IR photometry. Accurate calibration isaccomplished by using a sample of solar analogues, whose averagetemperature is assumed to be equal to the solar effective temperature of5777 K. By taking into account all possible sources of error we estimateassociated uncertainties to better than 1% in effective temperature andin the range 1.0-2.5% in angular semi-diameter for unreddened stars.Comparison of our new temperatures with other determinations extractedfrom the literature indicates, in general, remarkably good agreement.These results suggest that the effective temperaure scale of FGK starsis currently established with an accuracy better than 0.5%-1%. Theapplication of the method to a sample of 10 999 dwarfs in the Hipparcoscatalogue allows us to define temperature and bolometric correction (Kband) calibrations as a function of (V-K), [m/H] and log g. Bolometriccorrections in the V and K bands as a function of T_eff, [m/H] and log gare also given. We provide effective temperatures, angularsemi-diameters, radii and bolometric corrections in the V and K bandsfor the 10 999 FGK stars in our sample with the correspondinguncertainties.
| Statistical Constraints for Astrometric Binaries with Nonlinear Motion Useful constraints on the orbits and mass ratios of astrometric binariesin the Hipparcos catalog are derived from the measured proper motiondifferences of Hipparcos and Tycho-2 (Δμ), accelerations ofproper motions (μ˙), and second derivatives of proper motions(μ̈). It is shown how, in some cases, statistical bounds can beestimated for the masses of the secondary components. Two catalogs ofastrometric binaries are generated, one of binaries with significantproper motion differences and the other of binaries with significantaccelerations of their proper motions. Mathematical relations betweenthe astrometric observables Δμ, μ˙, and μ̈ andthe orbital elements are derived in the appendices. We find a remarkabledifference between the distribution of spectral types of stars withlarge accelerations but small proper motion differences and that ofstars with large proper motion differences but insignificantaccelerations. The spectral type distribution for the former sample ofbinaries is the same as the general distribution of all stars in theHipparcos catalog, whereas the latter sample is clearly dominated bysolar-type stars, with an obvious dearth of blue stars. We point outthat the latter set includes mostly binaries with long periods (longerthan about 6 yr).
| Herbig Ae/Be Stars in nearby OB Associations We have carried out a study of the early-type stars in nearby OBassociations spanning an age range of ~3-16 Myr, with the aim ofdetermining the fraction of stars that belong to the Herbig Ae/Be class.We studied the B, A, and F stars in the nearby (<=500 pc) OBassociations Upper Scorpius, Perseus OB2, Lacerta OB1, and Orion OB1,with membership determined from Hipparcos data. We also included in ourstudy the early-type stars in the Trumpler 37 cluster, part of the CepOB2 association. We obtained spectra for 440 Hipparcos stars in theseassociations, from which we determined accurate spectral types, visualextinctions, effective temperatures, luminosities and masses, usingHipparcos photometry. Using colors corrected for reddening, we find thatthe Herbig Ae/Be stars and the classical Be (CBe) stars occupy clearlydifferent regions in the JHK diagram. Thus, we use the location on theJHK diagram, as well as the presence of emission lines and of strong 12μm flux relative to the visual, to identify the Herbig Ae/Be stars inthe associations. We find that the Herbig Ae/Be stars constitute a smallfraction of the early-type stellar population even in the youngerassociations. Comparing the data from associations with different agesand assuming that the near-infrared excess in the Herbig Ae/Be starsarises from optically thick dusty inner disks, we determined theevolution of the inner disk frequency with age. We find that the innerdisk frequency in the age range 3-10 Myr in intermediate-mass stars islower than that in the low-mass stars (<1 Msolar) inparticular, it is a factor of ~10 lower at ~3 Myr. This indicates thatthe timescales for disk evolution are much shorter in theintermediate-mass stars, which could be a consequence of more efficientmechanisms of inner disk dispersal (viscous evolution, dust growth, andsettling toward the midplane).
| The primordial binary population. I. A near-infrared adaptive optics search for close visual companions to A star members of Scorpius OB2 We present the results of a near-infrared adaptive optics survey withthe aim to detect close companions to Hipparcos members in the threesubgroups of the nearby OB association Sco OB2: Upper Scorpius (US),Upper Centaurus Lupus (UCL) and Lower Centaurus Crux (LCC). We havetargeted 199 A-type and late B-type stars in the KS band, anda subset also in the J and H band. We find 151 stellar components otherthan the target stars. A brightness criterion is used to separate thesecomponents into 77 background stars and 74 candidate physical companionstars. Out of these 74 candidate companions, 41 have not been reportedbefore (14 in US; 13 in UCL; 14 in LCC). The angular separation betweenprimaries and observed companion stars ranges from 0.22'' to 12.4''. Atthe mean distance of Sco OB2 (130 pc) this corresponds to a projectedseparation of 28.6 AU to 1612 AU. Absolute magnitudes are derived forall primaries and observed companions using the parallax andinterstellar extinction for each star individually. For each object wederive the mass from KS, assuming an age of 5 Myr for the USsubgroup, and 20 Myr for the UCL and LCC subgroups. Companion starmasses range from 0.10 Mȯ to 3.0 Mȯ. Themass ratio distribution follows f(q) = q-Γ withΓ=0.33, which excludes random pairing. No close (ρ ≤3.75'') companion stars or background stars are found in the magnituderange 12 mag≤ KS ≤ 14 mag. The lack of stars withthese properties cannot be explained by low-number statistics, and mayimply a lower limit on the companion mass of 0.1Mȯ. Close stellar components with KS >14mag are observed. If these components are very low-mass companion stars,a gap in the companion mass distribution might be present. The smallnumber of close low-mass companion stars could support theembryo-ejection formation scenario for brown dwarfs. Our findings arecompared with and complementary to visual, spectroscopic, andastrometric data on binarity in Sco OB2. We find an overall companionstar fraction of 0.52 in this association. This is a lower limit sincethe data from the observations and from literature are hampered byobservational biases and selection effects. This paper is the first steptoward our goal to derive the primordial binary population in Sco OB2.Full Table 1 is only available in electronic form athttp://www.edpsciences.orgBased on observations collected with the ADONIS instrument at theEuropean Southern Observatory, La Silla, Chile (65.H-0568(A) and67.D-0220(A)).
| Formation scenarios for the young stellar associations between galactic longitudes l = 280degr - 360degr We investigate the spatial distribution, the space velocities and agedistribution of the pre-main sequence (PMS) stars belonging toOphiuchus, Lupus and Chamaeleon star-forming regions (SFRs), and of theyoung early-type star members of the Scorpius-Centaurus OB association.These young stellar associations extend over the galactic longituderange from 280degr to 360degr , and are at a distance interval ofaround 100 and 200 pc. This study is based on a compilation ofdistances, proper motions and radial velocities from the literature forthe kinematic properties, and of basic stellar data for the constructionof Hertzsprung-Russel diagrams. Although there was no well-known OBassociation in Chamaeleon, the distances and the proper motions of agroup of 21 B- and A-type stars, taken from the Hipparcos Catalogue,lead us to propose that they form a young association. We show that theyoung early-type stars of the OB associations and the PMS stars of theSFRs follow a similar spatial distribution, i.e., there is no separationbetween the low and the high-mass young stars. We find no difference inthe kinematics nor in the ages of these two populations studied.Considering not only the stars selected by kinematic criteria but thewhole sample of young early-type stars, the scattering of their propermotions is similar to that of the PMS stars and all the young starsexhibit a common direction of motion. The space velocities of theHipparcos PMS stars of each SFR are compatible with the mean values ofthe OB associations. The PMS stars in each SFR span a wide range of ages(from 1 to 20 Myr). The ages of the OB subgroups are 8-10 Myr for UpperScorpius (US), and 16-20 Myr for Upper Centaurus Lupus (UCL) and forLower Centaurus Crux (LCC). Thus, our results do not confirm that UCL isolder than the LCC association. Based on these results and theuncertainties associated with the age determination, we cannot say thatthere is indeed a difference in the age of the two populations. Weanalyze the different scenarios for the triggering of large-scalestar-formation that have been proposed up to now, and argue that mostprobably we are observing a spiral arm that passes close to the Sun. Thealignment of young stars and molecular clouds and the average velocityof the stars in the opposite direction to the Galactic rotation agreewith the expected behavior of star formation in nearby spiral arms.Tables 1 to 4 are only available in electronic form at the CDS viaanonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or viahttp://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/404/913
| Astrometric radial velocities. III. Hipparcos measurements of nearby star clusters and associations Radial motions of stars in nearby moving clusters are determined fromaccurate proper motions and trigonometric parallaxes, without any use ofspectroscopy. Assuming that cluster members share the same velocityvector (apart from a random dispersion), we apply a maximum-likelihoodmethod on astrometric data from Hipparcos to compute radial and spacevelocities (and their dispersions) in the Ursa Major, Hyades, ComaBerenices, Pleiades, and Praesepe clusters, and for theScorpius-Centaurus, alpha Persei, and ``HIP 98321'' associations. Theradial motion of the Hyades cluster is determined to within 0.4 kms-1 (standard error), and that of its individual stars towithin 0.6 km s-1. For other clusters, Hipparcos data yieldastrometric radial velocities with typical accuracies of a few kms-1. A comparison of these astrometric values withspectroscopic radial velocities in the literature shows a good generalagreement and, in the case of the best-determined Hyades cluster, alsopermits searches for subtle astrophysical differences, such as evidencefor enhanced convective blueshifts of F-dwarf spectra, and decreasedgravitational redshifts in giants. Similar comparisons for the ScorpiusOB2 complex indicate some expansion of its associations, albeit slowerthan expected from their ages. As a by-product from the radial-velocitysolutions, kinematically improved parallaxes for individual stars areobtained, enabling Hertzsprung-Russell diagrams with unprecedentedaccuracy in luminosity. For the Hyades (parallax accuracy 0.3 mas), itsmain sequence resembles a thin line, possibly with wiggles in it.Although this main sequence has underpopulated regions at certaincolours (previously suggested to be ``Böhm-Vitense gaps''), suchare not visible for other clusters, and are probably spurious. Futurespace astrometry missions carry a great potential for absoluteradial-velocity determinations, insensitive to the complexities ofstellar spectra. Based on observations by the ESA Hipparcos satellite.Extended versions of Tables \ref{tab1} and \ref{tab2} are available inelectronic form at the CDS via anonymous ftp to cdsarc.u-strasbg.fr(130.79.125.8) or viahttp://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/381/446
| A HIPPARCOS Census of the Nearby OB Associations A comprehensive census of the stellar content of the OB associationswithin 1 kpc from the Sun is presented, based on Hipparcos positions,proper motions, and parallaxes. It is a key part of a long-term projectto study the formation, structure, and evolution of nearby young stellargroups and related star-forming regions. OB associations are unbound``moving groups,'' which can be detected kinematically because of theirsmall internal velocity dispersion. The nearby associations have a largeextent on the sky, which traditionally has limited astrometricmembership determination to bright stars (V<~6 mag), with spectraltypes earlier than ~B5. The Hipparcos measurements allow a majorimprovement in this situation. Moving groups are identified in theHipparcos Catalog by combining de Bruijne's refurbished convergent pointmethod with the ``Spaghetti method'' of Hoogerwerf & Aguilar.Astrometric members are listed for 12 young stellar groups, out to adistance of ~650 pc. These are the three subgroups Upper Scorpius, UpperCentaurus Lupus, and Lower Centaurus Crux of Sco OB2, as well as VelOB2, Tr 10, Col 121, Per OB2, alpha Persei (Per OB3), Cas-Tau, Lac OB1,Cep OB2, and a new group in Cepheus, designated as Cep OB6. Theselection procedure corrects the list of previously known astrometricand photometric B- and A-type members in these groups and identifiesmany new members, including a significant number of F stars, as well asevolved stars, e.g., the Wolf-Rayet stars gamma^2 Vel (WR 11) in Vel OB2and EZ CMa (WR 6) in Col 121, and the classical Cepheid delta Cep in CepOB6. Membership probabilities are given for all selected stars. MonteCarlo simulations are used to estimate the expected number of interloperfield stars. In the nearest associations, notably in Sco OB2, thelater-type members include T Tauri objects and other stars in the finalpre-main-sequence phase. This provides a firm link between the classicalhigh-mass stellar content and ongoing low-mass star formation. Detailedstudies of these 12 groups, and their relation to the surroundinginterstellar medium, will be presented elsewhere. Astrometric evidencefor moving groups in the fields of R CrA, CMa OB1, Mon OB1, Ori OB1, CamOB1, Cep OB3, Cep OB4, Cyg OB4, Cyg OB7, and Sct OB2, is inconclusive.OB associations do exist in many of these regions, but they are eitherat distances beyond ~500 pc where the Hipparcos parallaxes are oflimited use, or they have unfavorable kinematics, so that the groupproper motion does not distinguish it from the field stars in theGalactic disk. The mean distances of the well-established groups aresystematically smaller than the pre-Hipparcos photometric estimates.While part of this may be caused by the improved membership lists, arecalibration of the upper main sequence in the Hertzsprung-Russelldiagram may be called for. The mean motions display a systematicpattern, which is discussed in relation to the Gould Belt. Six of the 12detected moving groups do not appear in the classical list of nearby OBassociations. This is sometimes caused by the absence of O stars, but inother cases a previously known open cluster turns out to be (part of) anextended OB association. The number of unbound young stellar groups inthe solar neighborhood may be significantly larger than thoughtpreviously.
|
새 글 등록
관련 링크
새 링크 등록
다음 그룹에 속해있음:
|
관측 및 측정 데이터
천체목록:
|