시작하기     To Survive in the Universe    
Inhabited Sky
    News@Sky     천체사진     컬렉션     포럼     Blog New!     질문및답변     출판     로그인  

TYC 7534-579-1


내용

사진

사진 업로드

DSS Images   Other Images


관련 글

Radial Velocity Studies of Southern Close Binary Stars. II. Spring/Summer Systems
Radial velocity measurements and sine-curve fits to the orbital velocityvariations are presented for 14 close binary stars, S Ant, TT Cet, TWCet, AA Cet, RW Dor, UX Eri, YY Eri, BV Eri, CT Eri, SZ Hor, AD Phe, TYPup, HI Pup, and TZ Pyx. All are double-lined binaries, and all exceptthe last one are contact binaries. The orbital data must be consideredpreliminary because of the relatively small number of observations(6-12), a circumstance that is partly compensated by the good definitionof the broadening functions used for the radial velocity determinations.Based on data obtained at the European Southern Observatory.

Variation in the orbital period of W UMa-type contact systems
The secular variation in the orbital period Porb is studiedas a function of the mass ratio q of the components in a sample of 73contact systems of class W UMa constructed from a survey of current(1991–2003) published photometric and spectroscopic data. Almostall the W UMa-systems (>93% of this sample) are found to have avariation in their orbital periods Porb which alternates insign independently of their division into A-and Wsubclasses. Astatistical study of this sample in terms of the observedcharacteristics dPorb/dt and q showed that on the average thenumbers of increases (35 systems) and decreases (33 systems) in theperiods are the same, which indicates the existence of flows directedalternately from one component to the other and illustrates the cyclicalcharacter of the thermal oscillations. An analysis of the behavior ofdPorb/dt as a function of the mass interval of the primarycomponent yields a more accurate value for the mass ratio, q ≈ 0.4÷ 0.45 at which contact binaries are separated into A-andW-subclasses. No correlations were observed between the fill-out factorfor the outer contact configuration, the total mass of the contactsystem, and the mass ratio of the components, on one hand, and the signof the secular variation in the period. The physical properties andevolutionary features of these systems are discussed.

A catalogue of eclipsing variables
A new catalogue of 6330 eclipsing variable stars is presented. Thecatalogue was developed from the General Catalogue of Variable Stars(GCVS) and its textual remarks by including recently publishedinformation about classification of 843 systems and making correspondingcorrections of GCVS data. The catalogue1 represents thelargest list of eclipsing binaries classified from observations.

On the properties of contact binary stars
We have compiled a catalogue of light curve solutions of contact binarystars. It contains the results of 159 light curve solutions. Theproperties of contact binary stars were studied using the cataloguedata. As is well known since Lucy's (\cite{Lucy68a},b) and Mochnacki's(\cite{Mochnacki81}) studies, primary components transfer their ownenergy to the secondary star via the common envelope around the twostars. This transfer was parameterized by a transfer parameter (ratio ofthe observed and intrinsic luminosities of the primary star). We provethat this transfer parameter is a simple function of the mass andluminosity ratios. We introduced a new type of contact binary stars: Hsubtype systems which have a large mass ratio (q>0.72). These systemsshow behaviour in the luminosity ratio- transfer parameter diagram thatis very different from that of other systems and according to ourresults the energy transfer rate is less efficient in them than in othertypes of contact binary stars. We also show that different types ofcontact binaries have well defined locations on the mass ratio -luminosity ratio diagram. Several contact binary systems do not followLucy's relation (L2/L1 =(M2/M1)0.92). No strict mass ratio -luminosity ratio relation of contact binary stars exists.Tables 2 and 3 are available in electronic form athttp://www.edpsciences.org

SB9: The ninth catalogue of spectroscopic binary orbits
The Ninth Catalogue of Spectroscopic Binary Orbits(http://sb9.astro.ulb.ac.be) continues the series of compilations ofspectroscopic orbits carried out over the past 35 years by Batten andcollaborators. As of 2004 May 1st, the new Catalogue holds orbits for2386 systems. Some essential differences between this catalogue and itspredecessors are outlined and three straightforward applications arepresented: (1) completeness assessment: period distribution of SB1s andSB2s; (2) shortest periods across the H-R diagram; (3)period-eccentricity relation.

Up-to-Date Linear Elements of Eclipsing Binaries
About 1800 O-C diagrams of eclipsing binaries were analyzed and up-todate linear elements were computed. The regularly updated ephemerides(as a continuation of SAC) are available only in electronic form at theInternet address: http://www.as.ap.krakow.pl/ephem/.

Are overcontact binaries undergoing thermal relaxation oscillation with variable angular momentum loss?
Orbital period variations of five W-type overcontact binaries, GW Cep,VY Cet, V700 Cyg, EM Lac and AW Vir, are presented based on the analysisof all available times of light minimum. It is discovered that theperiod of GW Cep is decreasing at a rate of dP/dt=-6.62×10-8 d yr-1. For VY Cet and V700 Cyg, acyclic oscillation is found superimposed on a secular period increase,which can be explained either by the light-time effect of an assumedthird body or by magnetic activity cycles. For the other two, EM Lac andAW Vir, the periods show a secular increase. GW Cep is a low mass ratiosystem with q= 0.37, while the others are high mass ratio systems (q=0.67, 0.65, 0.63 and 0.76, respectively). The period changes of the fivesample stars are in good agreement with Qian's conclusion that low massratio overcontact binaries usually show a decreasing period, while theperiods of high mass ratio systems are increasing.Based on the period variations of 59 overcontact binaries, a statisticalinvestigation of period change is given. It is confirmed that the periodchange of a W UMa-type binary star is correlated with the mass ratio (q)and with the mass of the primary component (M1). Meanwhile,some statistical relations (M1-P,Js-M1, Js-M2 andJs-P) for overcontact binaries are presented using theabsolute parameters of 78 systems. From these relations, the followingresults may be drawn: (i) free mass transfer in both directions existsbetween the components, which is assumed by thermal relaxationoscillation (TRO) theory; (ii) angular momentum loss (AML) can make a WUMa-type star maintain shallow overcontact and not evolve fromovercontact to semidetached configurations as proposed by Rahunen; (iii)the evolution of the W UMa-type systems may be oscillation around acritical mass ratio, while the critical mass ratio varies with the massof the primary component. These results can be plausibly explained bythe combination of the TRO and the variable AML via a change of depth ofthe overcontact, which is consistent with the X-ray and IUEobservations.

Catalogue of the field contact binary stars
A catalogue of 361 galactic contact binaries is presented. Listedcontact binaries are divided into five groups according to the type andquality of the available observations and parameters. For all systemsthe ephemeris for the primary minimum, minimum and maximum visualbrightness and equatorial coordinates are given. If available,photometric elements, (m1+m2)sin3i,spectral type, parallax and magnitude of the O'Connell effect are alsogiven. Photometric data for several systems are augmented by newobservations. The quality of the available data is assessed and systemsrequiring modern light-curve solutions are selected. Selectedstatistical properties of the collected data are discussed.

A CCD Photometric Study of the Contact Binary V396 Monocerotis
Complete BV light curves of the W Ursae Majoris binary V396 Mon arepresented. The present CCD photometric observations reveal that thelight curves of the system are obviously asymmetric, with the primarymaximum brighter than the secondary maximum (the ``O'Connell effect'').The light curves are analyzed by means of the latest version of theWilson-Devinney code. The results show that V396 Mon is a W-subtype WUMa contact binary with a mass ratio of 0.402. The asymmetry of thelight curves is explained by a cool spot on the secondary component. Thenature of the overluminosity of the secondary of a W UMa-type system isanalyzed. It is shown that the overluminosity of the secondary isclearly related to the mass of the primary and that, for a W UMa system,the higher the mass of the primary, the greater the overluminosity ofthe secondary. In addition, the overluminosity of the secondary is alsorelated to its own density: the lower the density of the secondary, thegreater its overluminosity.

ROSAT all-sky survey of W Ursae Majoris stars and the problem of supersaturation
From ROSAT all-sky survey (RASS) data we obtained X-ray fluxes for 57 WUMa type contact systems. In our sample we detected three stars whichare the shortest period main sequence binaries ever found as X-raysources. For stars with (B-V)_0 < 0.6 the normalized X-ray fluxdecreases with a decreasing color index but for (B-V)_0 > 0.6 aplateau is reached, similar to the saturation level observed for single,rapidly rotating stars. The X-ray flux of W UMa stars is about 4-5 timesweaker than that of the fastest rotating single stars. Because earlytype, low activity variables have longer periods, an apparentperiod-activity relation is seen among our stars, while cool stars with(B-V)_0 > 0.6 and rotation periods between 0.23 and 0.45 days do notshow any such relation. The lower X-ray emission of the single, ultrafast rotators (UFRs) and W UMa stars is interpreted as the result of adecreased coronal filling factor. The physical mechanisms responsiblefor the decreased surface coverage differs for UFRs and W UMa systems.For UFRs we propose strong polar updrafts within a convection zone,driven by nonuniform heating from below. The updrafts should beaccompanied by large scale poleward flows near the bottom of theconvective layer and equatorward flows in the surface layers. The flowsdrag dynamo generated fields toward the poles and create a field-freeequatorial region with a width depending on the stellar rotation rate.For W UMa stars we propose that a large scale horizontal flow embracingboth stars will prevent the magnetic field from producing long-livedstructures filled with hot X-ray emitting plasma. The decreased activityof the fastest rotating UFRs increases the angular momentum loss timescale of stars in a supersaturated state. Thus the existence of a periodcutoff and a limiting mass of W UMa stars can be naturally explained.

Stars with the Largest Hipparcos Photometric Amplitudes
A list of the 2027 stars that have the largest photometric amplitudes inHipparcos Photometry shows that most variable stars are all Miras. Thepercentage of variable types change as a function of amplitude. Thiscompilation should also be of value to photometrists looking forrelatively unstudied, but large amplitude stars.

Period changes in W UMa-type eclipsing binaries: DK Cygni, V401 Cygni, AD Phoenicis and Y Sextantis
We present a period analysis of the four well-known W UMa-type eclipsingbinaries DK Cyg (P = 0fd47 ), V401 Cyg (0fd58 ), AD Phe (0fd38 ) and YSex (0fd42 ). Several new times of minimum light, recordedphotoelectrically, have been gathered. Analysis of all available eclipsetimings of the DK Cygni and V401 Cygni has confirmed a significantincrease in period of 1.15 10-10 and 1.48 10-10day cycle-1, respectively. A simultaneous solution of the B,V and R light curves was computed for V401 Cyg using the Binary Maker2.0 synthetic lightcurve software. This solution indicates that V401 Cygis in contact with a filing factor of 46%. The period of AD Phe seems tobe constant. Period changes of Y Sex could be explain by a light-timeeffect caused by a third body in an eccentric orbit with a period of 58years. Some of the observations reported in this paper were obtained atthe South Africa Astronomical Observatory, Sutherland, South Africa.

The properties of W Ursae Majoris contact binaries: new results and old problems.
The physical properties of W UMa binary systems are revisited on thebasis of the observational data published in the last decade and of therecent theoretical studies on angular-momentum-loss-driven secularevolution. The absolute elements (masses, radii, luminosities) arederived by an inference method and a calibration based on the availablehigh quality spectroscopic orbits. The derived age (8Gy) agrees with theestimate of Guinan and Bradstreet from space motions. The analysis ofthe resulting physical parameters shows little correlation between thestandard classification in A and W subtype (first proposed by Binnendijk(1970) and only related to the light curve morphology) and theevolutionary status and origin of the systems. Most A-subtype systemsseem to have no evolutionary link with W-subtype ones. The relationbetween total mass and mass ratio for the "bona fide" sample alsosuggests that mass loss from the system may play an important role.

Accurate Positions Of Variable Stars Near The South Galactic Pole
Not Available

Contact and near-contact binary systems. VII - EZ Hydrae, AD Phoenicis and RS Columbae
BVRIc photometry is presented for three late-type contactbinaries: EZ Hydrae, AD Phoenicis and RS Columbae. EZ Hydrae isidentified as a W-type system of orbital period 0.45 day, while ADPhoenicis and RS Columbae are probably A-type systems, with orbitalperiods of 0.38 and 0.67 day, respectively. Although a value for themass ratio of EZ Hydrae had been obtained from spectroscopicobservations, no photometric solution could be obtained because ofsevere 'disturbances' in its light curve. On the other hand, photometricsolutions were obtained for AD Phoenicis and RS Columbae, but these werevery insensitive to mass ratio, which tended toward the unlikely valueof unity.

The Decreasing Period of Ag-Phoenicis
Seven UBV photoelectric times of minimum light are presented. They shiftthe photographically known period from 0d.613 to0d.380. The improvement of the light elements leads to areliable shortening of the period. A rough determination of the massratio permitted an estimate of the mass transfer in the system.

Violet and ultraviolet continua of W UMa systems on the basis of UVBY photometry observations
New observations of 17 southern WUMa systems are discussed together withprevious uvby data for 44 systems to determine properties of violet andultraviolet spectral distributions and to relate them to theperiod-color relation. The interstellar-reddening-corrected delta(m1)values extend from -0.02 to +0.10, which could be interpreted by aplausible range of metallicities; the most positive values of delta(m1)and largest ultraviolet excesses are observed for systems having theshortest periods at a given spectral type. The reddening-correcteddelta(c1) values are close to zero and are only slightly positive forearlier spectral types - mean delta (cl) = +0.04 for (b-y)O less than0.31 - indicating only very slight evolutionary advancement. Traces of adelta(cl) = -delta(ml) correlation for least evolved systems - smallestdelta(cl) - leave the possibility of intrinsic excesses still open.

A uvby, beta photometric survey of southern hemisphere
A uvby, beta photometric study of southern hemisphere eclipsing binarystars has been undertaken at Cerro Tololo Inter-American Observatory.The standardized colors and V magnitudes for 288 binaries at quadratureand/or at minimum are presented, along with an indication of theaccuracy of the standardization and photometry. Discussions of theresolving time of the pulse-counting photometers and of the atmosphericextinction at CTIO are included.

Times of Minima for Southern Hemisphere Eclipsing Binaries
Not Available

Veränderliche Sterne am Südhimmel. Teil V.
Not Available

57th Name-List of Variable Stars
Not Available

Elements for Sonneberg Variables (IX)
Not Available

Results of the Bamberg Southern Hemisphere Sky Patrol [erratum: 1969MNSSA..28...79S]
Not Available

새 글 등록


관련 링크

  • - 링크가 없습니다. -
새 링크 등록


다음 그룹에 속해있음:


관측 및 측정 데이터

별자리:불사조자리
적경:01h16m38.07s
적위:-39°42'31.4"
가시등급:10.475
적경상의 고유운동:-3.6
적위상의 고유운동:20.2
B-T magnitude:11.192
V-T magnitude:10.535

천체목록:
일반명   (Edit)
TYCHO-2 2000TYC 7534-579-1
USNO-A2.0USNO-A2 0450-00446421
HIPHIP 5955

→ VizieR에서 더 많은 목록을 가져옵니다.