目录
图像
上传图像
DSS Images Other Images
相关文章
Measuring the Balmer Jump and the Effective Gravity in FGK Stars It is difficult to accurately measure the effective gravity (logg) inlate-type stars using broadband (e.g., UBV or SDSS) or intermediate-band(uvby) photometric systems, especially when the stars can cover a rangeof metallicities and reddenings. However, simple spectroscopicobservational and data reduction techniques can yield accurate valuesfor logg through comparison of the Balmer jumps of low-resolutionspectra with recent grids of synthetic flux spectra.
| The frequency of planets in multiple systems Context: The frequency of planets in binaries is an important issue inthe field of extrasolar planet studies, because of its relevance inestimating of the global planet population of our Galaxy and the cluesit can give to our understanding of planet formation and evolution.However, only preliminary estimates are available in the literature. Aims: We analyze and compare the frequency of planets in multiplesystems to the frequency of planets orbiting single stars. We also tryto highlight possible connections between the frequency of planets andthe orbital parameters of the binaries (such as the periastron and massratio.) Methods: A literature search was performed for binariesand multiple systems among the stars of the sample with uniform planetdetectability defined by Fischer & Valenti (2005, ApJ, 622, 1102),and 202 of the 850 stars of the sample turned out to be binaries,allowing a statistical comparison of the frequency of planets inbinaries and single stars and a study of the run of the planet frequencyas a function of the binary separation. Results: We found that theglobal frequency of planets in the binaries of the sample is notstatistically different from that of planets in single stars. Evenconservatively taking the probable incompleteness of binary detection inour sample into account, we estimate that the frequency of planets inbinaries can be no more than a factor of three lower than that ofplanets in single stars. There is no significant dependence of planetfrequency on the binary separation, except for a lower value offrequency for close binaries. However, this is probably not as low asrequired to explain the presence of planets in close binaries only asthe result of modifications of the binary orbit after the planetformation. Table 8 and Appendix A are only available in electronic form athttp://www.aanda.org
| The usage of Strömgren photometry in studies of local group dwarf spheroidal galaxies. Application to Draco: a new catalogue of Draco members and a study of the metallicity distribution function and radial gradients Aims.In this paper we demonstrate how Strömgren uvby photometry canbe efficiently used to: 1. identify red giant branch stars that aremembers in a dwarf spheroidal galaxy; 2. derive age-independentmetallicities for the same stars and quantify the associated errors. Methods: Strömgren uvby photometry in a 11 × 22 arcmin fieldcentered on the Draco dwarf spheroidal galaxy was obtained using theIsaac Newton Telescope on La Palma. Members of the Draco dSph galaxywere identified using the surface gravity sensitive c1 indexwhich discriminates between red giant and dwarf stars. Thus enabling usto distinguish the (red giant branch) members of the dwarf spheroidalgalaxy from the foreground dwarf stars in our galaxy. The method isevaluated through a comparison of our membership list with membershipclassifications in the literature based on radial velocities and propermotions. The metallicity sensitive m1 index was used toderive individual and age-independent metallicities for the members ofthe Draco dSph galaxy. The derived metallicities are compared to studiesbased on high resolution spectroscopy and the agreement is found to bevery good. Results: We present metallicities for 169 members of the redgiant branch in the Draco dwarf spheroidal galaxy (the largest sample todate). The metallicity distribution function for the Draco dSph galaxyshows a mean [Fe/H] = -1.74 dex with a spread of 0.24 dex. Thecorrelation between metallicity and colour for the stars on the redgiant branch is consistent with a dominant old, and coeval population.There is a possible spatial population gradient over the field with themost metal-rich stars being more centrally concentrated than themetal-poor stars.Based on observations made with the Isaac Newton Telescope, operated onthe Island of La Palma by the Isaac Newton Group in the SpanishObservatorio del Roque de los Muchachos of the Instituto de Astrofisicade Canarias. Guest User, Canadian Astronomy Data Centre, which isoperated by the Herzberg Institute of Astrophysics, National ResearchCouncil of Canada. Full Tables 2 and 6 are only available athttp://www.aanda.org
| Medium-resolution Isaac Newton Telescope library of empirical spectra - II. The stellar atmospheric parameters We present a homogeneous set of stellar atmospheric parameters(Teff, logg, [Fe/H]) for MILES, a new spectral stellarlibrary covering the range λλ 3525-7500Å at2.3Å (FWHM) spectral resolution. The library consists of 985 starsspanning a large range in atmospheric parameters, from super-metal-rich,cool stars to hot, metal-poor stars. The spectral resolution, spectraltype coverage and number of stars represent a substantial improvementover previous libraries used in population synthesis models. Theatmospheric parameters that we present here are the result of aprevious, extensive compilation from the literature. In order toconstruct a homogeneous data set of atmospheric parameters we have takenthe sample of stars of Soubiran, Katz & Cayrel, which has very welldetermined fundamental parameters, as the standard reference system forour field stars, and have calibrated and bootstrapped the data fromother papers against it. The atmospheric parameters for our clusterstars have also been revised and updated according to recent metallicityscales, colour-temperature relations and improved set of isochrones.
| Optical spectroscopy of high proper motion stars: new M dwarfs within 10 pc and the closest pair of subdwarfs We present spectra of 59 nearby star candidates, M dwarfs and whitedwarfs, previously identified using high proper motion catalogues andthe DENIS database. We review the existing spectral classificationschemes and spectroscopic parallax calibrations in the near-infrared Jband and derive spectral types and distances of the nearby candidates.Forty-two stars have spectroscopic distances smaller than 25 pc, threeof them being white dwarfs. Two targets lie within 10 pc, one M8 star at10.0 pc (APMPM J0103-3738), and one M4 star at 8.3 pc (L 225-57). Onestar, LHS 73, is found to be among the few subdwarfs lying within 20 pc.Furthermore, together with LHS 72, it probably belongs to the closestpair of subdwarfs we know.
| Metallicity and absolute magnitude calibrations for UBV photometry Calibrations are presented here for metallicity ([Fe/H]) in terms of theultraviolet excess, [δ(U - B) at B - V = 0.6, hereafterδ0.6], and also for the absolute visual magnitude(MV) and its difference with respect to the Hyades(ΔMHV) in terms of δ0.6 and(B - V), making use of high-resolution spectroscopic abundances from theliterature and Hipparcos parallaxes. The relation[Fe/H]-δ0.6 has been derived for dwarf plus turn-offstars, and also for dwarf, turn-off, plus subgiant stars classifiedusing the MV-(B - V)0 plane of Fig. 11, which iscalibrated with isochrones from Bergbusch & VandenBerg (and alsoVandenBerg & Clem). The [Fe/H]-δ0.6 relations inour equations (5) and (6) agree well with those of Carney, as can beseen from Fig. 5(a). Within the uncertainties, the zero-points,+0.13(+/-0.05) of equation (5) and +0.13(+/-0.04) of equation (6), arein good agreement with the photometric ones of Cameron and of Carney,and close to the spectroscopic ones of Cayrel et al. and of Boesgaard& Friel for the Hyades open cluster. Good quantitative agreementbetween our estimated [Fe/H] abundances with those from uvby-βphotometry and spectroscopic [Fe/H]spec values demonstratesthat our equation (6) can be used in deriving quality photometric metalabundances for field stars and clusters using UBV data from variousphotometric surveys.For dwarf and turn-off stars, a new hybrid MV calibration ispresented, based on Hipparcos parallaxes withσπ/π <= 0.1 and with a dispersion of +/-0.24in MV. This hybrid MV calibration containsδ0.6 and (B - V) terms, plus higher order cross-termsof these, and is valid for the ranges of +0.37 <= (B - V)0<= +0.88,- 0.10 <= δ0.6 <= +0.29 and 3.44<= MV <= 7.23. For dwarf and turn-off stars, therelation for ΔMHV is revised and updated interms of (B - V) and δ0.6, for the ranges of -0.10<= δ0.6 <= +0.29, and +0.49 <= (B -V)0 <= +0.89, again making use of Hipparcos parallaxeswith σπ/π <= 0.1. These parallaxes formetal-poor dwarf and turn-off stars in our sample reveal that thedifference of ΔMHV(B - V) relative to Hyadesat (B - V) = +0.70 should be 1.37mag, instead of the 1.58mag given byLaird et al. In general, Hipparcos parallaxes are larger thanground-based ones, causing a divergence of ourΔMHV(B - V,δ0.6) relation(the solid line in Fig. 15b), from the one of Laird et al. (the dashedline) for the range +0.10 <= δ0.6 <= +0.29 ourabsolute magnitudes are fainter, as has been confirmed for localsubdwarfs by Reid. Our final calibrations forΔMHV(B - V, δ0.6),equations (16) and (17), are third-order polynomials inδ0.6, pass through the origin, and provide photometricdistances in reasonable agreement with those obtained directly fromHipparcos parallaxes (Fig. 18).
| Medium-resolution Isaac Newton Telescope library of empirical spectra A new stellar library developed for stellar population synthesismodelling is presented. The library consists of 985 stars spanning alarge range in atmospheric parameters. The spectra were obtained at the2.5-m Isaac Newton Telescope and cover the range λλ3525-7500 Å at 2.3 Å (full width at half-maximum) spectralresolution. The spectral resolution, spectral-type coverage,flux-calibration accuracy and number of stars represent a substantialimprovement over previous libraries used in population-synthesis models.
| The puzzling abundance pattern of HD134439 and HD134440 Abundances of 18 elements are determined for the common proper-motionpair, HD134439 and HD134440, which shows high [Mn/Fe] and low[α/Fe] ratios as compared to normal halo stars. Moreover, puzzlingabundances are indicated from elements whose origins are normallyconsidered to be from the same nucleosynthesis history. Particularly, wehave found that [Mg/Fe] and [Si/Fe] are lower than [Ca/Fe] and [Ti/Fe]by 0.1-0.3dex. When elemental abundances are interpreted in term oftheir condensation temperatures (TC), obvious trends of[X/Fe] versus TC for α elements and probably iron-peakelements as well are shown. The hypothesis that these stars have formedfrom a dusty environment in dwarf spheroidal (dSph) galaxy provides asolution to the puzzling abundance pattern.Based on observations made with ESO Telescopes at the La Silla orParanal Observatories from ESO archive and data collected at SubaruTelescope and obtained from the SMOKA science archive at AstronomicalData Analysis Center, which are operated by the National AstronomicalObservatory of Japan. E-mail: gzhao@bao.ac.cn
| Contributions to the Nearby Stars (NStars) Project: Spectroscopy of Stars Earlier than M0 within 40 pc-The Southern Sample We are obtaining spectra, spectral types, and basic physical parametersfor the nearly 3600 dwarf and giant stars earlier than M0 in theHipparcos catalog within 40 pc of the Sun. Here we report on resultsfor 1676 stars in the southern hemisphere observed at Cerro TololoInter-American Observatory and Steward Observatory. These resultsinclude new, precise, homogeneous spectral types, basic physicalparameters (including the effective temperature, surface gravity, andmetallicity [M/H]), and measures of the chromospheric activity of ourprogram stars. We include notes on astrophysically interesting stars inthis sample, the metallicity distribution of the solar neighborhood, anda table of solar analogs. We also demonstrate that the bimodal nature ofthe distribution of the chromospheric activity parameterlogR'HK depends strongly on the metallicity, andwe explore the nature of the ``low-metallicity'' chromosphericallyactive K-type dwarfs.
| Effective temperature scale and bolometric corrections from 2MASS photometry We present a method to determine effective temperatures, angularsemi-diameters and bolometric corrections for population I and II FGKtype stars based on V and 2MASS IR photometry. Accurate calibration isaccomplished by using a sample of solar analogues, whose averagetemperature is assumed to be equal to the solar effective temperature of5777 K. By taking into account all possible sources of error we estimateassociated uncertainties to better than 1% in effective temperature andin the range 1.0-2.5% in angular semi-diameter for unreddened stars.Comparison of our new temperatures with other determinations extractedfrom the literature indicates, in general, remarkably good agreement.These results suggest that the effective temperaure scale of FGK starsis currently established with an accuracy better than 0.5%-1%. Theapplication of the method to a sample of 10 999 dwarfs in the Hipparcoscatalogue allows us to define temperature and bolometric correction (Kband) calibrations as a function of (V-K), [m/H] and log g. Bolometriccorrections in the V and K bands as a function of T_eff, [m/H] and log gare also given. We provide effective temperatures, angularsemi-diameters, radii and bolometric corrections in the V and K bandsfor the 10 999 FGK stars in our sample with the correspondinguncertainties.
| Relics of Metal-free Low-Mass Stars Exploding as Thermonuclear Supernovae Renewed interest in the first stars that were formed in the universe hasled to the discovery of extremely iron-poor stars. Since severalcompeting scenarios exist, our understanding of the mass range thatdetermines the observed elemental abundances remains unclear. In thisstudy, we consider three well-studied metal-poor stars in terms of thetheoretical supernova (SN) model. Our results suggest that the observedabundance patterns in the metal-poor star BD +80 245 and the pair ofstars HD 134439/40 agree strongly with the theoretical possibility thatthese stars inherited their heavy-element abundance patterns from SNeinitiated by thermonuclear runaways in the degenerate carbon-oxygencores of primordial asymptotic giant branch stars with masses of ~3.5-5Msolar. Recent theoretical calculations have predicted thatsuch SNe could be originated from metal-free stars in theintermediate-mass range. On the other hand, intermediate-mass starscontaining some metals would end their lives as white dwarfs afterexpelling their envelopes in the wind due to intense momentum transportfrom outgoing photons to heavy elements. This new pathway for theformation of SNe requires that stars be formed from the primordial gas.Thus, we suggest that stars of a few solar masses were formed from theprimordial gas and that some of them caused thermonuclear explosionswhen the mass of their degenerate carbon-oxygen cores increased to theChandrasekhar limit without experiencing efficient mass loss.
| Pulkovo compilation of radial velocities for 35495 stars in a common system. Not Available
| The lithium content of the Galactic Halo stars Thanks to the accurate determination of the baryon density of theuniverse by the recent cosmic microwave background experiments, updatedpredictions of the standard model of Big Bang nucleosynthesis now yieldthe initial abundance of the primordial light elements withunprecedented precision. In the case of ^7Li, the CMB+SBBN value issignificantly higher than the generally reported abundances for Pop IIstars along the so-called Spite plateau. In view of the crucialimportance of this disagreement, which has cosmological, galactic andstellar implications, we decided to tackle the most critical issues ofthe problem by revisiting a large sample of literature Li data in halostars that we assembled following some strict selection criteria on thequality of the original analyses. In the first part of the paper wefocus on the systematic uncertainties affecting the determination of theLi abundances, one of our main goal being to look for the "highestobservational accuracy achievable" for one of the largest sets of Liabundances ever assembled. We explore in great detail the temperaturescale issue with a special emphasis on reddening. We derive four sets ofeffective temperatures by applying the same colour {T}_eff calibrationbut making four different assumptions about reddening and determine theLTE lithium values for each of them. We compute the NLTE corrections andapply them to the LTE lithium abundances. We then focus on our "best"(i.e. most consistent) set of temperatures in order to discuss theinferred mean Li value and dispersion in several {T}_eff and metallicityintervals. The resulting mean Li values along the plateau for [Fe/H]≤ 1.5 are A(Li)_NLTE = 2.214±0.093 and 2.224±0.075when the lowest effective temperature considered is taken equal to 5700K and 6000 K respectively. This is a factor of 2.48 to 2.81 (dependingon the adopted SBBN model and on the effective temperature range chosento delimit the plateau) lower than the CMB+SBBN determination. We findno evidence of intrinsic dispersion. Assuming the correctness of theCMB+SBBN prediction, we are then left with the conclusion that the Liabundance along the plateau is not the pristine one, but that halo starshave undergone surface depletion during their evolution. In the secondpart of the paper we further dissect our sample in search of newconstraints on Li depletion in halo stars. By means of the Hipparcosparallaxes, we derive the evolutionary status of each of our samplestars, and re-discuss our derived Li abundances. A very surprisingresult emerges for the first time from this examination. Namely, themean Li value as well as the dispersion appear to be lower (althoughfully compatible within the errors) for the dwarfs than for the turnoffand subgiant stars. For our most homogeneous dwarfs-only sample with[Fe/H] ≤ 1.5, the mean Li abundances are A(L)_NLTE = 2.177±0.071 and 2.215±0.074 when the lowest effective temperatureconsidered is taken equal to 5700 K and 6000 K respectively. This is afactor of 2.52 to 3.06 (depending on the selected range in {T}_eff forthe plateau and on the SBBN predictions we compare to) lower than theCMB+SBBN primordial value. Instead, for the post-main sequence stars thecorresponding values are 2.260±0.1 and 2.235±0.077, whichcorrespond to a depletion factor of 2.28 to 2.52. These results,together with the finding that all the stars with Li abnormalities(strong deficiency or high content) lie on or originate from the hotside of the plateau, lead us to suggest that the most massive of thehalo stars have had a slightly different Li history than their lessmassive contemporaries. In turn, this puts strong new constraints on thepossible depletion mechanisms and reinforces Li as a stellartomographer.
| CCD Photometry of M92 We present Johnson B and V photometry for the galactic globular clusterM92 (NGC 6341). Photometric results for a total of 30,000 starsare obtained and are plotted on a V versus (B-V) diagram. We fittheoretical isochrones to this diagram in order to get an estimate forthe age of M92. The age which we find is 16×109years with the following values for the metallicity and He-abundance:[Fe/H] = -2.03, Y = 0.235. The distance modulus to this cluster turnsout to be m - M = 14.6 in accordance with that obtained by Stetson &Harris (1988). We also perform stellar counts in order to produce aluminosity function which is successfully fitted by the same theoreticalmodels fitted to the colour-magnitude diagram.
| Sulphur abundance in Galactic stars We investigate sulphur abundance in 74 Galactic stars by using highresolution spectra obtained at ESO VLT and NTT telescopes. For the firsttime the abundances are derived, where possible, from three opticalmultiplets: Mult. 1, 6, and 8. By combining our own measurements withdata in the literature we assemble a sample of 253 stars in themetallicity range -3.2 [Fe/H] +0.5. Two important features,which could hardly be detected in smaller samples, are obvious from thislarge sample: 1) a sizeable scatter in [S/Fe] ratios around [Fe/H]-1; 2) at low metallicities we observe stars with [S/Fe] 0.4, aswell as stars with higher [S/Fe] ratios. The latter do not seem to bekinematically different from the former ones. Whether the latter findingstems from a distinct population of metal-poor stars or simply from anincreased scatter in sulphur abundances remains an open question.
| The Vertical Stellar Kinematics in Face-On Barred Galaxies: Estimating the Ages of Bars In order to perform a detailed study of the stellar kinematics in thevertical axis of bars, we obtained high signal-to-noise spectra alongthe major and minor axes of the bars in a sample of 14 face-on galaxiesand used them to determine the line-of-sight stellar velocitydistribution, parameterized as a Gauss-Hermite series. With these data,we developed a diagnostic tool that allows one to distinguish betweenrecently formed and evolved bars, as well as to estimate their ages,assuming that bars form in vertically thin disks that are recognizableby low values for the vertical velocity dispersion σz.Through N-body realizations of bar unstable disk galaxies we were alsoable to check the timescales involved in the processes that give bars animportant vertical structure. We show that σz inevolved bars is roughly 100 km s-1, which translates to aheight scale of about 1.4 kpc, giving support to scenarios in whichbulges form through disk material. Furthermore, the bars in ournumerical simulations have values for σz generallysmaller than 50 km s-1, even after evolving for 2 Gyr,suggesting that a slow process is responsible for making bars asvertically thick as we observe. We verify theoretically that theSpitzer-Schwarzschild mechanism is quantitatively able to explain theseobservations if we assume that giant molecular clouds are twice asconcentrated along the bar as in the rest of the disk.
| Spectroscopic Properties of Cool Stars (SPOCS). I. 1040 F, G, and K Dwarfs from Keck, Lick, and AAT Planet Search Programs We present a uniform catalog of stellar properties for 1040 nearby F, G,and K stars that have been observed by the Keck, Lick, and AAT planetsearch programs. Fitting observed echelle spectra with synthetic spectrayielded effective temperature, surface gravity, metallicity, projectedrotational velocity, and abundances of the elements Na, Si, Ti, Fe, andNi, for every star in the catalog. Combining V-band photometry andHipparcos parallaxes with a bolometric correction based on thespectroscopic results yielded stellar luminosity, radius, and mass.Interpolating Yonsei-Yale isochrones to the luminosity, effectivetemperature, metallicity, and α-element enhancement of each staryielded a theoretical mass, radius, gravity, and age range for moststars in the catalog. Automated tools provide uniform results and makeanalysis of such a large sample practical. Our analysis method differsfrom traditional abundance analyses in that we fit the observed spectrumdirectly, rather than trying to match equivalent widths, and wedetermine effective temperature and surface gravity from the spectrumitself, rather than adopting values based on measured photometry orparallax. As part of our analysis, we determined a new relationshipbetween macroturbulence and effective temperature on the main sequence.Detailed error analysis revealed small systematic offsets with respectto the Sun and spurious abundance trends as a function of effectivetemperature that would be inobvious in smaller samples. We attempted toremove these errors by applying empirical corrections, achieving aprecision per spectrum of 44 K in effective temperature, 0.03 dex inmetallicity, 0.06 dex in the logarithm of gravity, and 0.5 kms-1 in projected rotational velocity. Comparisons withprevious studies show only small discrepancies. Our spectroscopicallydetermined masses have a median fractional precision of 15%, but theyare systematically 10% higher than masses obtained by interpolatingisochrones. Our spectroscopic radii have a median fractional precisionof 3%. Our ages from isochrones have a precision that variesdramatically with location in the Hertzsprung-Russell diagram. We planto extend the catalog by applying our automated analysis technique toother large stellar samples.
| The Planet-Metallicity Correlation We have recently carried out spectral synthesis modeling to determineTeff, logg, vsini, and [Fe/H] for 1040 FGK-type stars on theKeck, Lick, and Anglo-Australian Telescope planet search programs. Thisis the first time that a single, uniform spectroscopic analysis has beenmade for every star on a large Doppler planet search survey. We identifya subset of 850 stars that have Doppler observations sufficient todetect uniformly all planets with radial velocity semiamplitudes K>30m s-1 and orbital periods shorter than 4 yr. From this subsetof stars, we determine that fewer than 3% of stars with-0.5<[Fe/H]<0.0 have Doppler-detected planets. Above solarmetallicity, there is a smooth and rapid rise in the fraction of starswith planets. At [Fe/H]>+0.3 dex, 25% of observed stars have detectedgas giant planets. A power-law fit to these data relates the formationprobability for gas giant planets to the square of the number of metalatoms. High stellar metallicity also appears to be correlated with thepresence of multiple-planet systems and with the total detected planetmass. This data set was examined to better understand the origin of highmetallicity in stars with planets. None of the expected fossilsignatures of accretion are observed in stars with planets relative tothe general sample: (1) metallicity does not appear to increase as themass of the convective envelopes decreases, (2) subgiants with planetsdo not show dilution of metallicity, (3) no abundance variations for Na,Si, Ti, or Ni are found as a function of condensation temperature, and(4) no correlations between metallicity and orbital period oreccentricity could be identified. We conclude that stars with extrasolarplanets do not have an accretion signature that distinguishes them fromother stars; more likely, they are simply born in higher metallicitymolecular clouds.Based on observations obtained at Lick and Keck Observatories, operatedby the University of California, and the Anglo-Australian Observatories.
| A Survey of Proper-Motion Stars. XVII. A Deficiency of Binary Stars on Retrograde Galactic Orbits and the Possibility that ω Centauri is Related to the Effect We compare the frequency of field binary stars as a function of Galacticvelocity vectors and find a deficiency of such stars on stronglyretrograde orbits. Metal-poor stars moving on prograde Galactic orbitshave a binary frequency of 28%+/-3%, whereas the retrograde stars'binary frequency is only 10%+/-2% for V<=-300 km s-1. Nosuch binary deficiencies are seen for the U or W velocities, nor for[Fe/H]. Some mechanism exists that either disrupts binary systems orpreferentially adds single stars moving primarily on retrograde orbits.Theoretical analyses and critical evaluations of our observational dataappear to rule out preferential disruption of preexisting binary starsdue to such causes as tidal interactions with massive gravitationalperturbers, including giant molecular clouds, black holes, or theGalactic center.Dynamically evolved stellar ensembles, such as globular clusters,provide a possible source of single stars. Three lines of evidence ruleout this explanation. First, there is no mechanism to significantlyenhance dissolution of clusters moving on retrograde orbits. Second, astudy of globular clusters moving on prograde and retrograde orbits andwith perigalacticon distances such that they are unlikely to be affectedstrongly by central tidal effects shows that clusters moving on progradeGalactic orbits may be more evolved dynamically than clusters moving onretrograde orbits. Finally, we have undertaken a comprehensive searchfor star streams that might be discernible. Monte Carlo modelingsuggests that our sample may include one moving group, but it containsonly five stars. Although the Galactic orbit of this group passes nearthe Galactic center, it is not moving on a retrograde Galactic orbit andfalls short by a factor of at least 20 in supplying the necessary numberof single stars.There is one intriguing possibility to explain our results. A dissolveddwarf galaxy may have too large a velocity spread to be easily detectedin our sample using our technique. However, dwarf galaxies appear tooften show element-to-iron versus [Fe/H] abundance patterns that are notsimilar to the bulk of the stellar field and cluster halo stars. Weexplore the s-process elements Y and Ba. Eight stars in our sample havesuch elemental abundances already measured and also lie in the criticaldomain with -1.6<=[Fe/H]<=-1.0 and V<=-300 km s-1.The admittedly small samples appears to show a bimodal distribution in[Y/Fe], [Ba/Fe], and [α/Fe], where ``α'' represents anaverage abundance of Mg, Si, Ca, and Ti. This behavior is reminiscent ofthe difference in the abundances found between the globular clusterω Centauri and other globular clusters. It is also intriguing thatthe stars most similar to ω Cen in their chemical abundances showa relatively coherent set of kinematic properties, with a modestvelocity dispersion. The stars less like ω Cen define adynamically hot population. The binary frequency of the stars in ωCen does not appear to be enhanced, but detailed modeling of the radialvelocity data remains to be done.
| SSSPM J1444-2019: An extremely high proper motion, ultracool subdwarf We present the discovery of a new extreme high proper motion object(˜3.5 arcsec/year) which we classify as an ultracool subdwarf with[M/H] ˜ -0.5. It has a formal spectral type of sdM9 but also showsL-type features: while the VO bands are completely absent, it exhibitsextremely strong TiO absorption in its optical spectrum. With a radialvelocity of about -160 km s-1 and a rough distance estimateof 16-24 pc, it is likely one of the nearest halo members crossing theSolar neighbourhood with a heliocentric space velocity of(U,V,W)=(-244,-256,-100)±(32,77,6) km s-1.Based on archival data from the SuperCOSMOS Sky Surveys, 2MASS, andDENIS, and observations with the ESO 3.6-m telescope (ESO 072.C-0630)and VLT (ESO 072.C-0725).
| Heavy elements and chemical enrichment in globular clusters High resolution (R 40 000) and high S/N spectra have been acquiredwith UVES on the VLT-Kueyen (Paranal Observatory, ESO Chile) for severalmain sequence turnoff stars (V 17 mag) and subgiants at the baseof the Red Giant Branch (V 16 mag) in three globular clusters (NGC6397, NGC 6752 and 47 Tuc/NGC 104) at different metallicities(respectively [Fe/H] ≃ -2.0; -1.5; -0.7). Spectra for a sample of25 field halo subdwarves have also been taken with equal resolution, buthigher S/N. These data have been used to determine the abundances ofseveral neutron-capture elements in these three clusters: strontium,yttrium, barium and europium. This is the first abundance determinationof these heavy elements for such unevolved stars in these three globularclusters. These values, together with the [Ba/Eu] and [Sr/Ba] abundanceratios, have been used to test the self-enrichment scenario. Acomparison is done with field halo stars and other well known Galacticglobular clusters in which heavy elements have already been measured inthe past, at least in bright giants (V 11-12 mag). Our resultsshow clearly that globular clusters have been uniformly enriched by r-and s-process syntheses, and that most of them seem to follow exactlythe same abundance patterns as field halo stars, which discards the``classical'' self-enrichment scenario for the origin of metallicitiesand heavy elements in globular clusters.Based on data collected at the European Southern Observatory with theVLT-UT2, Paranal, Chile (ESO-LP 165.L-0263).
| Stellar Chemical Signatures and Hierarchical Galaxy Formation To compare the chemistries of stars in the Milky Way dwarf spheroidal(dSph) satellite galaxies with stars in the Galaxy, we have compiled alarge sample of Galactic stellar abundances from the literature. Whenkinematic information is available, we have assigned the stars tostandard Galactic components through Bayesian classification based onGaussian velocity ellipsoids. As found in previous studies, the[α/Fe] ratios of most stars in the dSph galaxies are generallylower than similar metallicity Galactic stars in this extended sample.Our kinematically selected stars confirm this for the Galactic halo,thin-disk, and thick-disk components. There is marginal overlap in thelow [α/Fe] ratios between dSph stars and Galactic halo stars onextreme retrograde orbits (V<-420 km s-1), but this is notsupported by other element ratios. Other element ratios compared in thispaper include r- and s-process abundances, where we find a significantoffset in the [Y/Fe] ratios, which results in a large overabundance in[Ba/Y] in most dSph stars compared with Galactic stars. Thus, thechemical signatures of most of the dSph stars are distinct from thestars in each of the kinematic components of the Galaxy. This resultrules out continuous merging of low-mass galaxies similar to these dSphsatellites during the formation of the Galaxy. However, we do not ruleout very early merging of low-mass dwarf galaxies, since up to one-halfof the most metal-poor stars ([Fe/H]<=-1.8) have chemistries that arein fair agreement with Galactic halo stars. We also do not rule outmerging with higher mass galaxies, although we note that the LMC and theremnants of the Sgr dwarf galaxy are also chemically distinct from themajority of the Galactic halo stars. Formation of the Galaxy's thickdisk by heating of an old thin disk during a merger is also not ruledout; however, the Galaxy's thick disk itself cannot be comprised of theremnants from a low-mass (dSph) dwarf galaxy, nor of a high-mass dwarfgalaxy like the LMC or Sgr, because of differences in chemistry.The new and independent environments offered by the dSph galaxies alsoallow us to examine fundamental assumptions related to thenucleosynthesis of the elements. The metal-poor stars ([Fe/H]<=-1.8)in the dSph galaxies appear to have lower [Ca/Fe] and [Ti/Fe] than[Mg/Fe] ratios, unlike similar metallicity stars in the Galaxy.Predictions from the α-process (α-rich freeze-out) would beconsistent with this result if there have been a lack of hypernovae indSph galaxies. The α-process could also be responsible for thevery low Y abundances in the metal-poor stars in dSph's; since [La/Eu](and possibly [Ba/Eu]) are consistent with pure r-process results, thelow [Y/Eu] suggests a separate r-process site for this light(first-peak) r-process element. We also discuss SNe II rates and yieldsas other alternatives, however. In stars with higher metallicities([Fe/H]>=-1.8), contributions from the s-process are expected; [(Y,La, and Ba)/Eu] all rise as expected, and yet [Ba/Y] is still muchhigher in the dSph stars than similar metallicity Galactic stars. Thisresult is consistent with s-process contributions from lower metallicityAGB stars in dSph galaxies, and is in good agreement with the slowerchemical evolution expected in the low-mass dSph galaxies relative tothe Galaxy, such that the build-up of metals occurs over much longertimescales. Future investigations of nucleosynthetic constraints (aswell as galaxy formation and evolution) will require an examination ofmany stars within individual dwarf galaxies.Finally, the Na-Ni trend reported in 1997 by Nissen & Schuster isconfirmed in Galactic halo stars, but we discuss this in terms of thegeneral nucleosynthesis of neutron-rich elements. We do not confirm thatthe Na-Ni trend is related to the accretion of dSph galaxies in theGalactic halo.
| The distance to NGC 5904 (M 5) via the subdwarf main sequence fitting method We present a determination of the distance modulus of the globularcluster NGC 5904 (M 5), obtained by means of the subdwarf main-sequencefitting on the (V,V-I) color-magnitude diagram. The subdwarf sample hasbeen selected from the HIPPARCOS catalog in a metallicity rangehomogeneous with the cluster ([Fe/H] ≃ -1.1). Both the cluster andthe subdwarfs have been observed with the sametelescope+instrument+filters setup (namely, ESO-NTT equipped with theSUSI2 camera), in order to preserve homogeneity and reduce systematicuncertainties. A set of archival HST data has then been used to obtain adeep and precise ridge line. These have been accurately calibrated inthe ground photometric system by using the NTT data and used to fit thecluster distance modulus. By adopting the most commonly accepted valuesfor the reddening, E(B-V) = 0.035 and 0.03, we obtain respectivelyμ0 = 14.44 ± 0.09 ± 0.07 andμ0 = 14.41 ± 0.09 ± 0.07, in agreement withrecent determinations.Based on data collected at ESO-La Silla, Chile, (GTO 63.L-0717) and fromHST archival data (GO 8310).
| Chromospheric Ca II Emission in Nearby F, G, K, and M Stars We present chromospheric Ca II H and K activity measurements, rotationperiods, and ages for ~1200 F, G, K, and M type main-sequence stars from~18,000 archival spectra taken at Keck and Lick Observatories as a partof the California and Carnegie Planet Search Project. We have calibratedour chromospheric S-values against the Mount Wilson chromosphericactivity data. From these measurements we have calculated medianactivity levels and derived R'HK, stellar ages,and rotation periods from general parameterizations for 1228 stars,~1000 of which have no previously published S-values. We also presentprecise time series of activity measurements for these stars.Based on observations obtained at Lick Observatory, which is operated bythe University of California, and on observations obtained at the W. M.Keck Observatory, which is operated jointly by the University ofCalifornia and the California Institute of Technology. The KeckObservatory was made possible by the generous financial support of theW. M. Keck Foundation.
| The Luminosity Function and Color-Magnitude Diagram of the Globular Cluster M12 In this paper we present the V and I luminosity functions andcolor-magnitude diagrams derived from wide-field(23'×23') BVI photometry of theintermediate-metallicity ([Fe/H]~-1.3) Galactic globular cluster M12.Using observed values (and ranges of values) for the clustermetallicity, reddening, distance modulus, and age, we compare these datawith recent α-enhanced stellar evolution models for low-massmetal-poor stars. We describe several methods of making comparisonsbetween theoretical and observed luminosity functions to isolate theevolutionary timescale information that the luminosity functionscontain. We find no significant evidence of excesses of stars on the redgiant branch, although the morphology of the subgiant branch in theobserved luminosity function does not match theoretical predictions in asatisfactory way. Current uncertainties in Teff-colortransformations (and possibly also in other physics inputs to themodels) make more detailed conclusions about the subgiant branchmorphology impossible. Given the recent constraints on cluster ages fromthe WMAP experiment, we find that good-fitting models that do notinclude He diffusion (both color-magnitude diagrams and luminosityfunctions) are too old (by ~1-2 Gyr) to adequately represent the clusterluminosity function. The inclusion of helium diffusion in the modelsprovides an age reduction (compared with nondiffusive models) that isconsistent with the age of the universe being 13.7+/-0.2 Gyr.
| The Geneva-Copenhagen survey of the Solar neighbourhood. Ages, metallicities, and kinematic properties of 14 000 F and G dwarfs We present and discuss new determinations of metallicity, rotation, age,kinematics, and Galactic orbits for a complete, magnitude-limited, andkinematically unbiased sample of 16 682 nearby F and G dwarf stars. Our63 000 new, accurate radial-velocity observations for nearly 13 500stars allow identification of most of the binary stars in the sampleand, together with published uvbyβ photometry, Hipparcosparallaxes, Tycho-2 proper motions, and a few earlier radial velocities,complete the kinematic information for 14 139 stars. These high-qualityvelocity data are supplemented by effective temperatures andmetallicities newly derived from recent and/or revised calibrations. Theremaining stars either lack Hipparcos data or have fast rotation. Amajor effort has been devoted to the determination of new isochrone agesfor all stars for which this is possible. Particular attention has beengiven to a realistic treatment of statistical biases and errorestimates, as standard techniques tend to underestimate these effectsand introduce spurious features in the age distributions. Our ages agreewell with those by Edvardsson et al. (\cite{edv93}), despite severalastrophysical and computational improvements since then. We demonstrate,however, how strong observational and theoretical biases cause thedistribution of the observed ages to be very different from that of thetrue age distribution of the sample. Among the many basic relations ofthe Galactic disk that can be reinvestigated from the data presentedhere, we revisit the metallicity distribution of the G dwarfs and theage-metallicity, age-velocity, and metallicity-velocity relations of theSolar neighbourhood. Our first results confirm the lack of metal-poor Gdwarfs relative to closed-box model predictions (the ``G dwarfproblem''), the existence of radial metallicity gradients in the disk,the small change in mean metallicity of the thin disk since itsformation and the substantial scatter in metallicity at all ages, andthe continuing kinematic heating of the thin disk with an efficiencyconsistent with that expected for a combination of spiral arms and giantmolecular clouds. Distinct features in the distribution of the Vcomponent of the space motion are extended in age and metallicity,corresponding to the effects of stochastic spiral waves rather thanclassical moving groups, and may complicate the identification ofthick-disk stars from kinematic criteria. More advanced analyses of thisrich material will require careful simulations of the selection criteriafor the sample and the distribution of observational errors.Based on observations made with the Danish 1.5-m telescope at ESO, LaSilla, Chile, and with the Swiss 1-m telescope at Observatoire deHaute-Provence, France.Complete Tables 1 and 2 are only available in electronic form at the CDSvia anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or viahttp://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/418/989
| New Hipparcos-based Parallaxes for 424 Faint Stars We present a catalog of 424 common proper-motion companions to Hipparcosstars with good (>3 σ) parallaxes, thereby effectively providingnew parallaxes for these companions. Compared with typical stars in theHipparcos catalog, these stars are substantially dimmer. The catalogincludes 20 white dwarfs and an additional 29 stars withMV>14, the great majority of the latter being M dwarfs.
| Empirically Constrained Color-Temperature Relations. II. uvby A new grid of theoretical color indices for the Strömgren uvbyphotometric system has been derived from MARCS model atmospheres and SSGsynthetic spectra for cool dwarf and giant stars having-3.0<=[Fe/H]<=+0.5 and 3000<=Teff<=8000 K. Atwarmer temperatures (i.e., 8000-2.0. To overcome thisproblem, the theoretical indices at intermediate and high metallicitieshave been corrected using a set of color calibrations based on fieldstars having well-determined distances from Hipparcos, accurateTeff estimates from the infrared flux method, andspectroscopic [Fe/H] values. In contrast with Paper I, star clustersplayed only a minor role in this analysis in that they provided asupplementary constraint on the color corrections for cool dwarf starswith Teff<=5500 K. They were mainly used to test thecolor-Teff relations and, encouragingly, isochrones thatemploy the transformations derived in this study are able to reproducethe observed CMDs (involving u-v, v-b, and b-y colors) for a number ofopen and globular clusters (including M67, the Hyades, and 47 Tuc)rather well. Moreover, our interpretations of such data are verysimilar, if not identical, with those given in Paper I from aconsideration of BV(RI)C observations for the sameclusters-which provides a compelling argument in support of thecolor-Teff relations that are reported in both studies. Inthe present investigation, we have also analyzed the observedStrömgren photometry for the classic Population II subdwarfs,compared our ``final'' (b-y)-Teff relationship with thosederived empirically in a number of recent studies and examined in somedetail the dependence of the m1 index on [Fe/H].Based, in part, on observations made with the Nordic Optical Telescope,operated jointly on the island of La Palma by Denmark, Finland, Iceland,Norway, and Sweden, in the Spanish Observatorio del Roque de losMuchachos of the Instituto de Astrofisica de Canarias.Based, in part, on observations obtained with the Danish 1.54 mtelescope at the European Southern Observatory, La Silla, Chile.
| Synthetic Lick Indices and Detection of α-Enhanced Stars Synthetic Lick indices computed with solar scaled abundances and withα-element enhancement are presented and compared with predictionsfrom both theoretical computations (Tripicco & Bell; Thomas,Maraston, & Bender; Barbuy et al.) and empirical fitting functions(de Freitas Pacheco). We propose selected combinations of indicescapable of singling out α-enhanced stars without requiringprevious knowledge of their main atmospheric parameters. By applyingthis approach to the 460 stars in the Worthey et al. catalog, wedetected a list of 82 candidate α-enhanced stars. The confirmationof α-enhancement was obtained by searching the literature forindividual element abundance determinations from high-resolutionspectroscopy for a subsample of 34 stars. Preliminary discussion of theproperties of the detected α-enhanced stars with respect to their[Fe/H] values and kinematics is presented.
| Magnesium Isotopic Abundance Ratios in Cool Stars From high-resolution spectra of 61 cool dwarfs and giants, Mg isotopicabundance ratios 24Mg:25Mg:26Mg arederived from spectral synthesis of the MgH A-X lines near 5140 Å.Our sample spans the range -2.5<=[Fe/H]<=0.1, including the firstmeasurements of Mg isotope ratios in stars with metallicities below[Fe/H]=-2.0. We confirm the decrease in 25Mg/24Mgand 26Mg/24Mg with decreasing [Fe/H], as predictedby recent models of Galactic chemical evolution in which the Mg isotopesare produced in massive stars. A subset of kinematically identifiedthin-disk stars have Mg isotope ratios in excellent agreement with thepredictions. Within the measurement uncertainties, these thin-disk starsshow no scatter about the predictions. Several of our stars are likelymembers of the thick disk, and their high Mg isotopic ratios may reflectthe nucleosynthetic history of the thick disk, which is distinct fromthe predictions for, and observations of, the thin disk. For thick-diskand halo stars we find a scatter in 25Mg/24Mg and26Mg/24Mg exceeding our measurement uncertaintiesand increasing with increasing metallicity. Our data suggest that anadditional source of 25Mg and 26Mg is required.Intermediate-mass asymptotic giant branch stars are likely candidates.
|
提交文章
相关链接
提交链接
下列团体成员
|
观测天体数据
目录:
|