Contenidos
Imágenes
Subir su imagen
DSS Images Other Images
Artículos relacionados
Differential Radial Velocities and Stellar Parameters of Nearby Young Stars Radial velocity searches for substellar-mass companions have focusedprimarily on stars older than 1 Gyr. Increased levels of stellaractivity in young stars hinders the detection of solar system analogs,and therefore until recently there has been a prejudice againstinclusion of young stars in radial velocity surveys. Adaptive opticssurveys of young stars have given us insight into the multiplicity ofyoung stars, but only for massive, distant companions. Understanding thelimit of the radial velocity technique, restricted to high-mass,close-orbiting planets and brown dwarfs, we began a survey of youngstars of various ages. While the number of stars needed to carry outfull analysis of the problems of planetary and brown dwarf populationand evolution is large, the beginning of such a sample is included here.We report on 61 young stars ranging in age from the β Pictorisassociation (~12 Myr) to the Ursa Major association (~300 Myr). Thisinitial search resulted in no stars showing evidence of companionslarger than ~1MJup-2MJup in short-period orbits atthe 3 σ level. We also present derived stellar parameters, as mosthave unpublished values. The chemical homogeneity of a cluster, andpresumably of an association, may help to constrain true membership, sowe present [Fe/H] abundances for the stars in our sample.
| Frequency of Debris Disks around Solar-Type Stars: First Results from a Spitzer MIPS Survey We have searched for infrared excesses around a well-defined sample of69 FGK main-sequence field stars. These stars were selected withoutregard to their age, metallicity, or any previous detection of IRexcess; they have a median age of ~4 Gyr. We have detected 70 μmexcesses around seven stars at the 3 σ confidence level. Thisextra emission is produced by cool material (<100 K) located beyond10 AU, well outside the ``habitable zones'' of these systems andconsistent with the presence of Kuiper Belt analogs with ~100 times moreemitting surface area than in our own planetary system. Only one star,HD 69830, shows excess emission at 24 μm, corresponding to dust withtemperatures >~300 K located inside of 1 AU. While debris disks withLdust/L*>=10-3 are rare around oldFGK stars, we find that the disk frequency increases from 2%+/-2% forLdust/L*>=10-4 to 12%+/-5% forLdust/L*>=10-5. This trend in thedisk luminosity distribution is consistent with the estimated dust inour solar system being within an order of magnitude greater or less thanthe typical level around similar nearby stars. Although there is nocorrelation of IR excess with metallicity or spectral type, there is aweak correlation with stellar age, with stars younger than a gigayearmore likely to have excess emission.
| Abundances of refractory elements in the atmospheres of stars with extrasolar planets Aims.This work presents a uniform and homogeneous study of chemicalabundances of refractory elements in 101 stars with and 93 without knownplanetary companions. We carry out an in-depth investigation of theabundances of Si, Ca, Sc, Ti, V, Cr, Mn, Co, Ni, Na, Mg and Al. The newcomparison sample, spanning the metallicity range -0.70< [Fe/H]<0.50, fills the gap that previously existed, mainly at highmetallicities, in the number of stars without known planets.Methods.Weused an enlarged set of data including new observations, especially forthe field "single" comparison stars . The line list previously studiedby other authors was improved: on average we analysed 90 spectral linesin every spectrum and carefully measured more than 16 600 equivalentwidths (EW) to calculate the abundances.Results.We investigate possibledifferences between the chemical abundances of the two groups of stars,both with and without planets. The results are globally comparable tothose obtained by other authors, and in most cases the abundance trendsof planet-host stars are very similar to those of the comparison sample.Conclusions.This work represents a step towards the comprehension ofrecently discovered planetary systems. These results could also beuseful for verifying galactic models at high metallicities andconsequently improve our knowledge of stellar nucleosynthesis andgalactic chemical evolution.
| Chemical Abundances in the Secondary Star of the Neutron Star Binary Centaurus X-4 Using a high-resolution spectrum of the secondary star in the neutronstar binary Cen X-4, we have derived the stellar parameters and veilingcaused by the accretion disk in a consistent way. We have used aχ2 minimization procedure to explore a grid of 1,500,000LTE synthetic spectra computed for a plausible range of both stellar andveiling parameters. Adopting the best model parameters found, we havedetermined atmospheric abundances of Fe, Ca, Ti, Ni, and Al. Theseelement abundances are supersolar ([Fe/H]=0.23+/-0.10), but only theabundances of Ti and Ni appear to be moderately enhanced (>=1σ) as compared with the average values of stars of similar ironcontent. These element abundances can be explained if the secondary starcaptured a significant amount of matter ejected from a sphericallysymmetric supernova (SN) explosion of a 4 Msolar He coreprogenitor and if we assume solar abundances as primordial abundances inthe secondary star. The kinematic properties of the system indicate thatthe neutron star received a natal kick velocity through an aspherical SNand/or an asymmetric neutrino emission. The former scenario might beruled out, since our model computations cannot produce acceptable fitsto the observed abundances. We have also examined whether this systemcould have formed in the Galactic halo, and our simulations show thatthis possibility seems unlikely. We also report a new determination ofthe Li abundance, consistent with previous studies, that is unusuallyhigh and close to the cosmic Li abundance in the Galactic disk.Based on observations obtained with the UVES at the VLT Kueyen 8.2 mtelescope in program 65.H-0447.
| 8-13 μm Spectroscopy of Young Stellar Objects: Evolution of the Silicate Feature Silicate features arising from material around pre-main-sequence starsare useful probes of the star and planet formation process. In order toinvestigate possible connections between dust processing and diskproperties, 8-13 μm spectra of 34 young stars, exhibiting a range ofcircumstellar environments and including spectral types A-M, wereobtained using the Long Wavelength Spectrometer at the W. M. KeckObservatory. The broad 9.7 μm amorphous silicate (SiO stretching)feature that dominates this wavelength regime evolves from absorption inyoung, embedded sources, to emission in optically revealed stars, and tocomplete absence in older ``debris'' disk systems for both low- andintermediate-mass stars. This is similar to the evolutionary patternseen in Infrared Space Observatory (ISO) observations ofhigh/intermediate-mass young stellar objects (YSOs). The peak wavelengthand FWHM are centered about 9.7 and ~2.3 μm, respectively,corresponding to amorphous olivine, with a larger spread in FWHM forembedded sources and in peak wavelength for disks. In a few of ourobjects that have been previously identified as class I low-mass YSOs,the observed silicate feature is more complex, with absorption near 9.5μm and emission peaking around 10 μm. Although most of theemission spectra show broad classical features attributed to amorphoussilicates, small variations in the shape/strength may be linked to dustprocessing, including grain growth and/or silicate crystallization. Forsome of the Herbig Ae stars in the sample, the broad emission featurehas an additional bump near 11.3 μm, similar to the emission fromcrystalline forsterite seen in comets and the debris disk βPictoris. Only one of the low-mass stars, Hen 3-600A, and one Herbig Aestar, HD 179218, clearly show strong, narrow emission near 11.3 μm.We study quantitatively the evidence for evolutionary trends in the 8-13μm spectra through a variety of spectral shape diagnostics. Based onthe lack of correlation between these diagnostics and broadband infraredluminosity characteristics for silicate emission sources, we concludethat although spectral signatures of dust processing are present, theycannot be connected clearly to disk evolutionary stage (for opticallythick disks) or optical depth (for optically thin disks). Thediagnostics of silicate absorption features (other than the centralwavelength of the feature), however, are tightly correlated with opticaldepth and thus do not probe silicate grain properties.
| An Infrared Coronagraphic Survey for Substellar Companions We have used the F160W filter (1.4-1.8 μm) and the coronagraph on theNear-Infrared Camera and Multi-Object Spectrometer (NICMOS) on theHubble Space Telescope to survey 45 single stars with a median age of0.15 Gyr, an average distance of 30 pc, and an average H magnitude of 7mag. For the median age we were capable of detecting a 30MJcompanion at separations between 15 and 200 AU. A 5MJ objectcould have been detected at 30 AU around 36% of our primaries. Forseveral of our targets that were less than 30 Myr old, the lower masslimit was as low as 1MJ, well into the high mass planetregion. Results of the entire survey include the proper-motionverification of five low-mass stellar companions, two brown dwarfs(HR7329B and TWA5B), and one possible brown dwarf binary (Gl 577B/C).
| Evolution of Cold Circumstellar Dust around Solar-type Stars We present submillimeter (Caltech Submillimeter Observatory 350 μm)and millimeter (Swedish-ESO Submillimetre Telescope [SEST] 1.2 mm, OwensValley Radio Observatory [OVRO] 3 mm) photometry for 127 solar-typestars from the Formation and Evolution of Planetary Systems SpitzerLegacy program that have masses between ~0.5 and 2.0 Msolarand ages from ~3 Myr to 3 Gyr. Continuum emission was detected towardfour stars with a signal-to-noise ratio>=3: the classical T Tauristars RX J1842.9-3532, RX J1852.3-3700, and PDS 66 with SEST, and thedebris-disk system HD 107146 with OVRO. RX J1842.9-3532 and RXJ1852.3-3700 are located in projection near the R CrA molecular cloud,with estimated ages of ~10 Myr (Neuhäuser et al.), whereas PDS 66is a probable member of the ~20 Myr old Lower Centaurus-Crux subgroup ofthe Scorpius-Centaurus OB association (Mamajek et al.). The continuumemission toward these three sources is unresolved at the 24" SESTresolution and likely originates from circumstellar accretion disks,each with estimated dust masses of ~5×10-5Msolar. Analysis of the visibility data toward HD 107146(age~80-200 Myr) indicates that the 3 mm continuum emission is centeredon the star within the astrometric uncertainties and resolved with aGaussian-fit FWHM size of (6.5"+/-1.4")×(4.2"+/-1.3"), or185AU×120 AU. The results from our continuum survey are combinedwith published observations to quantify the evolution of dust mass withtime by comparing the mass distributions for samples with differentstellar ages. The frequency distribution of circumstellar dust massesaround solar-type stars in the Taurus molecular cloud (age~2 Myr) isdistinguished from that around 3-10 Myr and 10-30 Myr old stars at asignificance level of ~1.5 and ~3 σ, respectively. These resultssuggest a decrease in the mass of dust contained in small dust grainsand/or changes in the grain properties by stellar ages of 10-30 Myr,consistent with previous conclusions. Further observations are needed todetermine if the evolution in the amount of cold dust occurs on evenshorter timescales.
| Binarity, activity and metallicity among late-type stars. I. Methodology and application to HD 27536 and HD 216803 We present the first in a series of papers that attempt to investigatethe relation between binarity, magnetic activity, and chemical surfaceabundances of cool stars. In the current paper, we lay out and test twoabundance analysis methods and apply them to two well-known, active,single stars, HD 27536 (G8IV-III) and HD216803 (K5V), presenting photospheric fundamental parametersand abundances of Li, Al, Ca, Si, Sc, Ti, V, Cr, Fe, Co and Ni. Theabundances from the two methods agree within the errors for all elementsexcept calcium in HD 216803, which means that either method yields thesame fundamental model parameters and the same abundances. Activity isdescribed by the radiative loss in the Ca ii H and K lines with respectto the bolometric luminosity, through the activity index R_HK. Binarityis established by very precise radial velocity (RV) measurements usingHARPS spectra. The spectral line bisectors are examined for correlationsbetween RV and bisector shape to distinguish between the effects ofstellar activity and unseen companions. We show that HD 27536 exhibit RVvariations mimicking the effect of a low-mass (m 4 M_J) companionin a relatively close (a 1 AU) orbit. The variation is stronglycorrelated with the activity, and consistent with the known photometricperiod P = 306.9 d, demonstrating a remarkable coherence between R_HKand the bisector shape, i.e. between the photosphere and thechromosphere. We discuss the complications involved in distinguishingbetween companion and activity induced RV variations.
| Abundances of Na, Mg and Al in stars with giant planets We present Na, Mg and Al abundances in a set of 98 stars with knowngiant planets, and in a comparison sample of 41 “single”stars. The results show that the [X/H] abundances (with X = Na, Mg andAl) are, on average, higher in stars with giant planets, a resultsimilar to the one found for iron. However, we did not find any strongdifference in the [X/Fe] ratios, for a fixed [Fe/H], between the twosamples of stars in the region where the samples overlap. The data wasused to study the Galactic chemical evolution trends for Na, Mg and Aland to discuss the possible influence of planets on this evolution. Theresults, similar to those obtained by other authors, show that the[X/Fe] ratios all decrease as a function of metallicity up to solarvalues. While for Mg and Al this trend then becomes relatively constant,for Na we find indications of an upturn up to [Fe/H] values close to0.25 dex. For metallicities above this value the [Na/Fe] becomesconstant.
| Chromospheric Ca II Emission in Nearby F, G, K, and M Stars We present chromospheric Ca II H and K activity measurements, rotationperiods, and ages for ~1200 F, G, K, and M type main-sequence stars from~18,000 archival spectra taken at Keck and Lick Observatories as a partof the California and Carnegie Planet Search Project. We have calibratedour chromospheric S-values against the Mount Wilson chromosphericactivity data. From these measurements we have calculated medianactivity levels and derived R'HK, stellar ages,and rotation periods from general parameterizations for 1228 stars,~1000 of which have no previously published S-values. We also presentprecise time series of activity measurements for these stars.Based on observations obtained at Lick Observatory, which is operated bythe University of California, and on observations obtained at the W. M.Keck Observatory, which is operated jointly by the University ofCalifornia and the California Institute of Technology. The KeckObservatory was made possible by the generous financial support of theW. M. Keck Foundation.
| Constraining the Lifetime of Circumstellar Disks in the Terrestrial Planet Zone: A Mid-Infrared Survey of the 30 Myr old Tucana-Horologium Association We have conducted an N-band survey of 14 young stars in the ~30 Myr oldTucana-Horologium association to search for evidence of warm,circumstellar dust disks. Using the MIRAC-BLINC camera on the Magellan I(Baade) 6.5 m telescope, we find that none of the stars have astatistically significant N-band excess compared to the predictedstellar photospheric flux. Using three different sets of assumptions,this null result rules out the existence of the following around thesepost-T Tauri stars: (1) optically thick disks with inner hole radii of<~0.1 AU, (2) optically thin disks with masses of less than10-6 M⊕ (in ~1 μm sized grains) within<~10 AU of these stars, and (3) scaled-up analogs of the solar systemzodiacal dust cloud with more than 4000 times the emitting area. Oursurvey was sensitive to dust disks in the terrestrial planet zone withfractional luminosity oflog(Ldust/L*)~10-2.9, yet none werefound. Combined with results from previous surveys, these data suggestthat circumstellar dust disks become so optically thin as to beundetectable at N band before age ~20 Myr. We also present N-bandphotometry for several members of other young associations and asubsample of targets that will be observed with the Spitzer SpaceTelescope by the Formation and Evolution of Planetary Systems LegacyScience Program. Finally, we present an absolute calibration ofMIRAC-BLINC for four filters (L, N, 11.6, and Qs) on theCohen-Walker-Witteborn system.
| Ten Micron Observations of Nearby Young Stars We present new 10 μm photometry of 21 nearby young stars obtained atthe Palomar 5 m and at the Keck I 10 m telescopes as part of a programto search for dust in the habitable zone of young stars. Thirteen of thestars are in the F-K spectral type range (``solar analogs''), four haveB or A spectral types, and four have spectral type M. We confirmexisting IRAS 12 μm and ground-based 10 μm photometry for 10 ofthe stars and present new insight into this spectral regime for therest. Excess emission at 10 μm is not found in any of the young solaranalogs, except for a possible 2.4 σ detection in the G5 V star HD88638. The G2 V star HD 107146, which does not display a 10 μmexcess, is identified as a new Vega-like candidate, based on our 10μm photospheric detection, combined with previously unidentified 60and 100 μm IRAS excesses. Among the early-type stars, a 10 μmexcess is detected only in HD 109573A (HR 4796A), confirming priorobservations; among the M dwarfs, excesses are confirmed in AA Tau, CD-40°8434, and Hen 3-600A. A previously suggested N-band excess inthe M3 dwarf CD -33°7795 is shown to be consistent with photosphericemission. We calculate infrared to stellar bolometric luminosity ratiosfor all stars exhibiting mid-infrared excesses and infer the total massof orbiting dust in the cases of optically thin disks. For a derivedmedian photometric precision of +/-0.11 mag, we place an upper limit ofMdust~2×10-5 M⊕ on the dustmass (assuming a dust temperature of 300 K) around solar analogs notseen in excess at 10 μm. Our calculations for the nearby K1 V star HD17925 show that it may have the least massive debris disk known outsideour solar system (Mdust>~7×10-6M⊕). Our limited data confirm the expected tendency ofdecreasing fractional dust excessfd=LIR/L* with increasing stellar age.However, we argue that estimates of fd suffer from adegeneracy between the temperature and the amount of circumstellar dustMdust, and we propose a relation of Mdust as afunction of age instead.
| The Brown Dwarf Desert at 75-1200 AU We present results of a comprehensive infrared coronagraphic search forsubstellar companions to nearby stars. The research consisted of (1) a178-star survey at Steward and Lick observatories, with opticalfollow-up from Keck Observatory, capable of detecting companions withmasses greater than 30 MJ, and semimajor axes between about140 to 1200 AU; (2) a 102-star survey using the Keck Telescope, capableof detecting extrasolar brown dwarfs and planets typically more massivethan 10 MJ, with semimajor axes between about 75 and 300 AU.Only one brown dwarf companion was detected, and no planets. Thefrequency of brown dwarf companions to G, K, and M stars orbitingbetween 75 and 300 AU is measured to be 1%+/-1%, the most precisemeasurement of this quantity to date. The frequency of massive (greaterthan 30 MJ) brown dwarf companions at 120-1200 AU is found tobe f=0.7%+/-0.7%. The frequency of giant planet companions with massesbetween 5 and 10 MJ orbiting between 75 and 300 AU ismeasured here for the first time to be no more than ~3%. Together withother surveys that encompass a wide range of orbital separations, theseresults imply that substellar objects with masses between 12 and 75MJ form only rarely as companions to stars. Theories of starformation that could explain these data are only now beginning toemerge.
| C, S, Zn and Cu abundances in planet-harbouring stars We present a detailed and uniform study of C, S, Zn and Cu abundances ina large set of planet host stars, as well as in a homogeneous comparisonsample of solar-type dwarfs with no known planetary-mass companions.Carbon abundances were derived by EW measurement of two C I opticallines, while spectral syntheses were performed for S, Zn and Cu. Weinvestigated possible differences in the behaviours of the volatiles C,S and Zn and in the refractory Cu in targets with and without knownplanets in order to check possible anomalies due to the presence ofplanets. We found that the abundance distributions in stars withexoplanets are the high [Fe/H] extensions of the trends traced by thecomparison sample. All volatile elements we studied show [X/Fe] trendsdecreasing with [Fe/H] in the metallicity range -0.8< [Fe/H] <0.5, with significantly negative slopes of -0.39±0.04 and-0.35±0.04 for C and S, respectively. A comparison of ourabundances with those available in the literature shows good agreementin most cases.Based on observations collected at the La Silla Observatory, ESO(Chile), with the CORALIE spectrograph at the 1.2-m Euler Swisstelescope and with the FEROS spectrograph at the 1.52-m and 2.2-m ESOtelescopes, at the Paranal Observatory, ESO (Chile), using the UVESspectrograph at the VLT/UT2 Kueyen telescope, and with the UES and SARGspectrographs at the 4-m William Hershel Telescope (WHT) and at the3.5-m TNG telescope, respectively, both at La Palma (Canary Islands).Tables 4-16 are only available in electronic form athttp://www.edpsciences.org
| Chemical enrichment and star formation in the Milky Way disk. III. Chemodynamical constraints In this paper, we investigate some chemokinematical properties of theMilky Way disk, by using a sample composed by 424 late-type dwarfs. Weshow that the velocity dispersion of a stellar group correlates with theage of this group, according to a law proportional to t0.26,where t is the age of the stellar group. The temporal evolution of thevertex deviation is considered in detail. It is shown that the vertexdeviation does not seem to depend strongly on the age of the stellargroup. Previous studies in the literature seem to not have found it dueto the use of statistical ages for stellar groups, rather thanindividual ages. The possibility to use the orbital parameters of a starto derive information about its birthplace is investigated, and we showthat the mean galactocentric radius is likely to be the most reliablestellar birthplace indicator. However, this information cannot bepresently used to derive radial evolutionary constraints, due to anintrinsic bias present in all samples constructed from nearby stars. Anextensive discussion of the secular and stochastic heating mechanismscommonly invoked to explain the age-velocity dispersion relation ispresented. We suggest that the age-velocity dispersion relation couldreflect the gradual decrease in the turbulent velocity dispersion fromwhich disk stars form, a suggestion originally made by Tinsley &Larson (\cite{tinsley}, ApJ, 221, 554) and supported by several morerecent disk evolution calculations. A test to distinguish between thetwo types of models using high-redshift galaxies is proposed.Full Table 1 is only available in electronic form at the CDS viaanonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or viahttp://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/423/517
| The Geneva-Copenhagen survey of the Solar neighbourhood. Ages, metallicities, and kinematic properties of 14 000 F and G dwarfs We present and discuss new determinations of metallicity, rotation, age,kinematics, and Galactic orbits for a complete, magnitude-limited, andkinematically unbiased sample of 16 682 nearby F and G dwarf stars. Our63 000 new, accurate radial-velocity observations for nearly 13 500stars allow identification of most of the binary stars in the sampleand, together with published uvbyβ photometry, Hipparcosparallaxes, Tycho-2 proper motions, and a few earlier radial velocities,complete the kinematic information for 14 139 stars. These high-qualityvelocity data are supplemented by effective temperatures andmetallicities newly derived from recent and/or revised calibrations. Theremaining stars either lack Hipparcos data or have fast rotation. Amajor effort has been devoted to the determination of new isochrone agesfor all stars for which this is possible. Particular attention has beengiven to a realistic treatment of statistical biases and errorestimates, as standard techniques tend to underestimate these effectsand introduce spurious features in the age distributions. Our ages agreewell with those by Edvardsson et al. (\cite{edv93}), despite severalastrophysical and computational improvements since then. We demonstrate,however, how strong observational and theoretical biases cause thedistribution of the observed ages to be very different from that of thetrue age distribution of the sample. Among the many basic relations ofthe Galactic disk that can be reinvestigated from the data presentedhere, we revisit the metallicity distribution of the G dwarfs and theage-metallicity, age-velocity, and metallicity-velocity relations of theSolar neighbourhood. Our first results confirm the lack of metal-poor Gdwarfs relative to closed-box model predictions (the ``G dwarfproblem''), the existence of radial metallicity gradients in the disk,the small change in mean metallicity of the thin disk since itsformation and the substantial scatter in metallicity at all ages, andthe continuing kinematic heating of the thin disk with an efficiencyconsistent with that expected for a combination of spiral arms and giantmolecular clouds. Distinct features in the distribution of the Vcomponent of the space motion are extended in age and metallicity,corresponding to the effects of stochastic spiral waves rather thanclassical moving groups, and may complicate the identification ofthick-disk stars from kinematic criteria. More advanced analyses of thisrich material will require careful simulations of the selection criteriafor the sample and the distribution of observational errors.Based on observations made with the Danish 1.5-m telescope at ESO, LaSilla, Chile, and with the Swiss 1-m telescope at Observatoire deHaute-Provence, France.Complete Tables 1 and 2 are only available in electronic form at the CDSvia anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or viahttp://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/418/989
| NEXXUS: A comprehensive ROSAT survey of coronal X-ray emission among nearby solar-like stars We present a final summary of all ROSAT X-ray observations of nearbystars. All available ROSAT observations with the ROSAT PSPC, HRI and WFChave been matched with the CNS4 catalog of nearby stars and the resultsgathered in the Nearby X-ray and XUV-emitting Stars data base, availablevia www from the Home Page of the Hamburger Sternwarte at the URLhttp://www.hs.uni-hamburg.de/DE/For/Gal/Xgroup/nexxus. Newvolume-limited samples of F/G-stars (dlim = 14 pc), K-stars(dlim = 12 pc), and M-stars (dlim = 6 pc) areconstructed within which detection rates of more than 90% are obtained;only one star (GJ 1002) remains undetected in a pointed follow-upobservation. F/G-stars, K-stars and M-stars have indistinguishablesurface X-ray flux distributions, and the lower envelope of the observeddistribution at FX ≈ 104 erg/cm2/sis the X-ray flux level observed in solar coronal holes. Large amplitudevariations in X-ray flux are uncommon for solar-like stars, but maybemore common for stars near the bottom of the main sequence; a largeamplitude flare is reported for the M star LHS 288. Long term X-raylight curves are presented for α Cen A/B and Gl 86, showingvariations on time scales of weeks and demonstrating that α Cen Bis a flare star.Tables 1-3 are also available in electronic form at the CDS viaanonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or viahttp://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/417/651
| Spectroscopic [Fe/H] for 98 extra-solar planet-host stars. Exploring the probability of planet formation We present stellar parameters and metallicities, obtained from adetailed spectroscopic analysis, for a large sample of 98 stars known tobe orbited by planetary mass companions (almost all known targets), aswell as for a volume-limited sample of 41 stars not known to host anyplanet. For most of the stars the stellar parameters are revisedversions of the ones presented in our previous work. However, we alsopresent parameters for 18 stars with planets not previously published,and a compilation of stellar parameters for the remaining 4 planet-hostsfor which we could not obtain a spectrum. A comparison of our stellarparameters with values of Teff, log g, and [Fe/H] availablein the literature shows a remarkable agreement. In particular, ourspectroscopic log g values are now very close to trigonometric log gestimates based on Hipparcos parallaxes. The derived [Fe/H] values arethen used to confirm the previously known result that planets are moreprevalent around metal-rich stars. Furthermore, we confirm that thefrequency of planets is a strongly rising function of the stellarmetallicity, at least for stars with [Fe/H] > 0. While only about 3%of the solar metallicity stars in the CORALIE planet search sample werefound to be orbited by a planet, this number increases to more than 25%for stars with [Fe/H] above +0.3. Curiously, our results also suggestthat these percentages might remain relatively constant for values of[Fe/H] lower than about solar, increasing then linearly with the massfraction of heavy elements. These results are discussed in the contextof the theories of planetary formation.Based on observations collected at the La Silla Observatory, ESO(Chile), with the CORALIE spectrograph at the 1.2-m Euler Swisstelescope and the FEROS spectrograph at the 1.52-m and 2.2-m ESOtelescopes, with the VLT/UT2 Kueyen telescope (Paranal Observatory, ESO,Chile) using the UVES spectrograph (Observing run 67.C-0206, in servicemode), with the TNG and William Herschel Telescopes, both operated atthe island of La Palma, and with the ELODIE spectrograph at the 1.93-mtelescope at the Observatoire de Haute Provence.
| The Cosmic Production of Helium We estimate the cosmic production rate of helium relative to metals(ΔY/ΔZ) using K dwarf stars in the Hipparcos catalog withaccurate spectroscopic metallicities. The best fitting value isΔY/ΔZ = 2.1 +/- 0.4 at the 68% confidence level. Our derivedvalue agrees with determinations from H II regions and with theoreticalpredictions from stellar yields with standard assumptions for theinitial mass function. The amount of helium in stars determines how longthey live and therefore how fast they will enrich the interstellarmedium with fresh material.
| Improved Astrometry and Photometry for the Luyten Catalog. II. Faint Stars and the Revised Catalog We complete construction of a catalog containing improved astrometry andnew optical/infrared photometry for the vast majority of NLTT starslying in the overlap of regions covered by POSS I and by the secondincremental Two Micron All Sky Survey (2MASS) release, approximately 44%of the sky. The epoch 2000 positions are typically accurate to 130 mas,the proper motions to 5.5 mas yr-1, and the V-J colors to0.25 mag. Relative proper motions of binary components are measured to 3mas yr-1. The false-identification rate is ~1% for11<~V<~18 and substantially less at brighter magnitudes. Theseimprovements permit the construction of a reduced proper-motion diagramthat, for the first time, allows one to classify NLTT stars intomain-sequence (MS) stars, subdwarfs (SDs), and white dwarfs (WDs). We inturn use this diagram to analyze the properties of both our catalog andthe NLTT catalog on which it is based. In sharp contrast to popularbelief, we find that NLTT incompleteness in the plane is almostcompletely concentrated in MS stars, and that SDs and WDs are detectedalmost uniformly over the sky δ>-33deg. Our catalogwill therefore provide a powerful tool to probe these populationsstatistically, as well as to reliably identify individual SDs and WDs.
| Dependence of coronal X-ray emission on spot-induced brightness variations in cool main sequence stars The maximum amplitude (Amax) of spot-induced brightnessvariations from long-term V-band photometry and the ratioLX/Lbol between X-ray and bolometric luminositiesare suitable indicators of the level of magnetic activity in thephotosphere and in the corona of late-type stars, respectively. By usingthese activity indicators we investigate the dependence of coronal X-rayemission on the level of photospheric starspot activity in a homogeneoussample of low mass main sequence field and cluster stars of differentages (IC 2602, IC 4665,IC 2391, alpha Persei,Pleiades and Hyades). First, theactivity-rotation connection at the photospheric level is re-analysed,as well as its dependence on spectral type and age. The upper envelopeof Amax increases monotonically with decreasing rotationalperiod (P) and Rossby number (R0) showing a break around 1.1d that separates two rotation regimes where the starspot activity showsdifferent behaviours. The Amax-P andAmax-R0 relations are fitted with linear,exponential and power laws to look for the function which bestrepresents the trend of the data. The highest values of Amaxare found among K-type stars and at the ages of alphaPersei and Pleiades. We also analyse theactivity-rotation connection at the coronal level as well as itsdependence on spectral type. The level of X-ray emission increases withincreasing rotation rate up to a saturation level. The rotational periodat which saturation occurs is colour-dependent and increases withadvancing spectral type. Also the LX/Lbol-P andLX/Lbol-R0 relations are fitted withlinear, exponential and power laws to look for the best fittingfunction. Among the fastest rotating stars (P<=0.3 d) there isevidence of super-saturation. Also the highest values ofLXLbol are found among K-type stars. Finally, thephotospheric-coronal activity connection is investigated by using forthe first time the largest ever sample of light curve amplitudes asindicators of the magnetic filling factor. The activity parametersLX/Lbol and Amax are found to becorrelated with each other, thus confirming the dependence of coronalactivity on photospheric magnetic fields. More precisely, theLX/Lbol-Amax distribution shows thepresence of an upper envelope, which is constant at theLX/Lbol =~ -3.0 saturation level, and of a lowerenvelope. The best fit to the lower envelope is given by a power lawwith steepness decreasing from F-G to M spectral types. However, it isconsidered a tentative result, since the fit reduced chi-squares arelarge. Such spectral-type dependence may be related to a colourdependence of Amax on the total starspot filling factor, aswell as to the coronal emission being possibly more sensitive tostarspot activity variations in F- and G-type than in M-type stars. TheLX/Lbol-Amax mean values for eachcluster in our sample decrease monotonically with increasing age,showing that the levels of photospheric and coronal activity evolve intime according to a single power law till the Sun's age.Tables of the photometric and X-ray data sets are only available inelectronic form at the CDS via anonymous ftp to cdsarc.u-strasbg.fr(130.79.128.5) or viahttp://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/410/671
| Chemical abundances of planet-host stars. Results for alpha and Fe-group elements In this paper, we present a study of the abundances of Si, Ca, Sc, Ti,V, Cr, Mn, Co, and Ni in a large set of stars known to harbor giantplanets, as well as in a comparison sample of stars not known to haveany planetary-mass companions. We have checked for possible chemicaldifferences between planet hosts and field stars without known planets.Our results show that overall, and for a given value of [Fe/H], theabundance trends for the planet hosts are nearly indistinguishable fromthose of the field stars. In general, the trends show nodiscontinuities, and the abundance distributions of stars with giantplanets are high [Fe/H] extensions to the curves traced by the fielddwarfs without planets. The only elements that might present slightdifferences between the two groups of stars are V, Mn, and to a lesserextent Ti and Co. We also use the available data to describe galacticchemical evolution trends for the elements studied. When comparing theresults with former studies, a few differences emerge for the high[Fe/H] tail of the distribution, a region that is sampled withunprecedented detail in our analysis.Based on observations collected at the La Silla Observatory, ESO(Chile), with the CORALIE spectrograph at the 1.2-m Euler Swisstelescope and the FEROS spectrograph at the 1.52-m ESO telescope, withthe VLT/UT2 Kueyen telescope (Paranal Observatory, ESO, Chile) using theUVES spectrograph (Observing run 67.C-0206, in service mode), with theTNG and William Herschel Telescopes, both operated at the island of LaPalma, and with the ELODIE spectrograph at the 1.93-m telescope at theObservatoire de Haute Provence.
| The field brown dwarf LP 944-20 and the Castor moving group A reliable age estimation for the field brown dwarf LP944-20 is accomplished through the analysis of its kinematicproperties. The space velocities of this star strongly suggest itsmembership in the so-called Castor moving group. LP 944-20 can besensibly assumed to have the group's age, which is estimated to be ~320 Myr, and metal content, which is found to be roughly solar. Withthese new constrains and the available photometry and lithium abundance,current brown dwarf models are put to a test. Using the IR magnitudesand the lithium diagnostics, the models are able to provide a reasonabledescription of the brown dwarf's properties (to within a few sigma) butyield an age which is roughly 50% larger than our estimate. Possiblereasons for this discrepancy are discussed.
| Statistical cataloging of archival data for luminosity class IV-V stars. II. The epoch 2001 [Fe/H] catalog This paper describes the derivation of an updated statistical catalog ofmetallicities. The stars for which those metallicities apply are ofspectral types F, G, and K, and are on or near the main sequence. Theinput data for the catalog are values of [Fe/H] published before 2002February and derived from lines of weak and moderate strength. Theanalyses used to derive the data have been based on one-dimensional LTEmodel atmospheres. Initial adjustments which are applied to the datainclude corrections to a uniform temperature scale which is given in acompanion paper (see Taylor \cite{t02}). After correction, the data aresubjected to a statistical analysis. For each of 941 stars considered,the results of that analysis include a mean value of [Fe/H], an rmserror, an associated number of degrees of freedom, and one or moreidentification numbers for source papers. The catalog of these resultssupersedes an earlier version given by Taylor (\cite{t94b}).Catalog is only available in electronic form at the CDS via anonymousftp cdsarc.u-strasbg.fr (130.79.128.5) or viahttp://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/398/731
| Statistical cataloging of archival data for luminosity class IV-V stars. I. The epoch 2001 temperature catalog This paper is one of a pair in which temperatures and metallicitycatalogs for class IV-V stars are considered. The temperature catalogdescribed here is derived from a calibration based on stellar angulardiameters. If published calibrations of this kind are compared by usingcolor-index transformations, temperature-dependent differences among thecalibrations are commonly found. However, such differences are minimizedif attention is restricted to calibrations based on Johnson V-K. Acalibration of this sort from Di Benedetto (\cite{dib98}) is thereforetested and adopted. That calibration is then applied to spectroscopicand photometric data, with the latter predominating. Cousins R-Iphotometry receives special attention because of its high precision andlow metallicity sensitivity. Testing of temperatures derived from thecalibration suggests that their accuracy and precision are satisfactory,though further testing will be warranted as new results appear. Thesetemperatures appear in the catalog as values of theta equiv5040/T(effective). Most of these entries are accompanied by measured orderived values of Cousins R-I. Entries are given for 951 stars.Catalog is only available in electronic form at the CDS via anonymousftp to cdsarc.u-strasbg.fr (130.79.128.5) or viahttp://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/398/721
| The stellar activity-rotation relationship revisited: Dependence of saturated and non-saturated X-ray emission regimes on stellar mass for late-type dwarfs We present the results of a new study on the relationship betweencoronal X-ray emission and stellar rotation in late-type main-sequencestars. We have selected a sample of 259 dwarfs in the B-V range 0.5-2.0,including 110 field stars and 149 members of the Pleiades, Hyades, alphaPersei, IC 2602 and IC 2391 open clusters. All the stars have beenobserved with ROSAT, and most of them have photometrically-measuredrotation periods available. Our results confirm that two emissionregimes exist, one in which the rotation period is a good predictor ofthe total X-ray luminosity, and the other in which a constant saturatedX-ray to bolometric luminosity ratio is attained; we present aquantitative estimate of the critical rotation periods below which starsof different masses (or spectral types) enter the saturated regime. Inthis work we have also empirically derived a characteristic time scale,taue , which we have used to investigate the relationshipbetween the X-ray emission level and an X-ray-based Rossby numberRe = Prot/taue: we show that ourempirical time scale taue resembles the theoreticalconvective turnover time for 0.4 <~ M/Msun <~ 1.2, butit also has the same functional dependence on B-V asLbol-1/2 in the color range 0.5 <~ B-V <~1.5. Our results imply that - for non-saturated coronae - theLx - Prot relation is equivalent to theLx/Lbol vs. Re relation. Tables 1 and 2are only available in electronic form at \ http://www.edpsciences.org
| The radii and spectra of the nearest stars We discuss direct measurements of the radii of 36 stars located closerthan 25 parsecs to the Sun. We present the data on 307 radii and 326spectral types and luminosity classes for the nearest stars locatedinside the sphere with a radius of 10 parsecs.
| K dwarfs and the chemical evolution of the solar cylinder K dwarfs have lifetimes older than the present age of the Galactic disc,and are thus ideal stars for investigating the chemical evolution of thedisc. We have developed several photometric metallicity indicators for Kdwarfs, based on a sample of accurate spectroscopic metallicities for 34disc and halo G and K dwarfs. The photometric metallicities lead us todevelop a metallicity index for K dwarfs based only on their position inthe colour-absolute-magnitude diagram. Metallicities have beendetermined for 431 single K dwarfs drawn from the Hipparcos catalogue,selecting the stars by absolute magnitude and removing multiple systems.The sample is essentially a complete reckoning of the metal content innearby K dwarfs. We use stellar isochrones to mark the stars by mass,and select a subset of 220 of the stars, which is complete within anarrow mass interval. We fit the data with a model of the chemicalevolution of the solar cylinder. We find that only a modest cosmicscatter is required to fit our age-metallicity relation. The modelassumes two main infall episodes for the formation of the halo-thickdisc and thin disc, respectively. The new data confirm that the solarneighbourhood formed on a long time-scale of the order of 7 Gyr.
| Luminosity-metallicity relation for stars on the lower main sequence We present a comparison of the predictions of stellar models with theluminosity of the lower main sequence (5.5 < MV < 7.3)using K dwarfs in the Hipparcos catalogue. The parallaxes of ourcomparison stars are known to better than 15 per cent and metallicitieshave been recently determined from photometry. A major advantage of ourcomparison is that distances in our sample are known with good accuracy,while tests that involve open and globular clusters are constrained bypotentially inaccurate distances. We show that the luminosity of thelower main sequence is a simple function of metallicity, deriving therelation ΔMV= 0.045 77 - 0.843 75 ×[Fe/H], whereΔMV is the luminosity difference relative to afiducial, solar metallicity isochrone. We compare the data with a rangeof isochrones from the literature. None of the isochrone sets fits thedata at all metallicities, although some models do clearly better thanothers. In particular, metal-rich isochrones seem to be difficult toconstruct. The relationship between luminosity, colour and metallicityfor K dwarfs is found to be very tight. We are thus able to derivemetallicities for K dwarfs based on their position in the Hipparcoscolour-magnitude diagram with accuracies better than 0.1 dex. Themetallicity-luminosity relation for K dwarfs leads to a new distanceindicator with a wide range of possible applications.
| Collisional processes in extrasolar planetesimal discs - dust clumps in Fomalhaut's debris disc This paper presents a model for the outcome of collisions betweenplanetesimals in a debris disc, and assesses the impact of collisionalprocesses on the structure and size distribution of the disc. The modelis presented by its application to Fomalhaut's collisionally replenisheddust disc; a recent 450-μm image of this disc shows a clump embeddedwithin it with a flux ~5 per cent of the total. The followingconclusions are drawn. (i) Spectral energy distribution modelling isconsistent with Fomalhaut's disc having a collisional cascade sizedistribution extending from bodies 0.2 m in diameter (the largest thatcontribute to the 850-μm flux) down to 7-μm-sized dust (smallergrains are blown out of the system by radiation pressure). (ii)Collisional lifetime arguments imply that the collisional cascade startswith planetesimals 1.5-4 km in diameter, and so has a mass of20-30M⊕. Any larger bodies must be predominantlyprimordial. (iii) Constraints on the time-scale for the ignition of thecollisional cascade from planet formation models are consistent withthese primordial planetesimals having the same distribution as thecascade extending up to 1000 km, resulting in a disc mass of 5-10 timesthe minimum solar nebula mass. (iv) The debris disc is expected to beintrinsically clumpy, as planetesimal collisions result in dust clumpsthat can last up to 700 orbital periods. The intrinsic clumpiness ofFomalhaut's disc is below current detection limits, but it could bedetectable by future observatories such as ALMA, and could provide theonly way of determining this primordial planetesimal population. Also,we note that such intrinsic clumpiness in an exozodiacal cloud-like disccould present a confusion limit when trying to detect terrestrialplanets. (v) The observed clump could have originated in a collisionbetween two runaway planetesimals, both larger than 1400 km in diameter.It appears unlikely that we should witness such an event unless both theformation of these runaways and the ignition of the collisional cascadeoccurred relatively recently (within the last ~10 Myr), however this isa topic which would benefit from further exploration using planetformation and collisional models. (vi) Another explanation forFomalhaut's clump is that ~5 per cent of the planetesimals in the ringwere trapped in 1:2 resonance with a planet orbiting at 80 au when itmigrated out as a result of the clearing of a residual planetesimaldisc. The motion on the sky of such a clump would be 0.2 arcsecyr-1, and it would be more prominent at shorter wavelengths.
|
Enviar un nuevo artículo
Enlaces relacionados
- - No se han encontrado enlaces -
En viar un nuevo enlace
Miembro de los siguientes grupos:
|
Datos observacionales y astrométricos
Constelación: | Pez Austral |
Ascensión Recta: | 22h56m24.00s |
Declinación: | -31°33'56.0" |
Magnitud Aparente: | 6.48 |
Distancia: | 7.637 parsecs |
Movimiento Propio en Ascensión Recta: | 334 |
Movimiento Propio en Declinación: | -157.1 |
B-T magnitude: | 7.896 |
V-T magnitude: | 6.601 |
Catálogos y designaciones:
|